p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane

被引:81
|
作者
Pingel, Patrick [1 ]
Arvind, Malavika [2 ]
Koelln, Lisa [1 ]
Steyrleuthner, Robert [3 ]
Kraffert, Felix [3 ]
Behrends, Jan [3 ]
Janietz, Silvia [1 ]
Neher, Dieter [2 ]
机构
[1] Fraunhofer Inst Appl Polymer Res IAP, Geiselbergstr 69, D-14476 Potsdam, Germany
[2] Univ Potsdam, Soft Matter Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Free Univ Berlin, Dept Phys, Berlin Joint EPR Lab, Arnimallee 14, D-14195 Berlin, Germany
来源
ADVANCED ELECTRONIC MATERIALS | 2016年 / 2卷 / 10期
关键词
charge carrier transport; charge transfer; conductivity; molecular doping; organic semiconductors; LIGHT-EMITTING-DIODES; CHARGE-TRANSFER; CONJUGATED POLYMERS; CONDUCTIVITY; TRANSPORT; EFFICIENT;
D O I
10.1002/aelm.201600204
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Compensating Poly(3-hexylthiophene) Reveals Its Doping Density and Its Strong Exciton Quenching by Free Carriers
    Liang, Ziqi
    Gregg, Brian A.
    ADVANCED MATERIALS, 2012, 24 (24) : 3258 - 3262
  • [22] A Negative-Type Photosensitive Poly(3-hexylthiophene) with Cross-Linker and Photoacid GeneratorA Negative-type Photosensitive Poly(3-hexylthiophene)
    Keita Endo
    Tomohito Ogura
    Tomoya Higashihara
    Mitsuru Ueda
    Polymer Journal, 2009, 41 : 808 - 809
  • [23] Lewis acid-base pair doping of p-type organic semiconductors
    Peterson, Kelly A.
    Chabinyc, Michael L.
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (16) : 6287 - 6295
  • [24] P-doping poly(3-hexylthiophene) with F4TCNQ in binary solvent mixtures
    Sapolsky, Marni
    Freeman, Lucas
    Miller, Paul
    Boucher, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [25] Doping Effect of Organosulfonic Acid in Poly(3-hexylthiophene) Films for Organic Field-Effect Transistors
    Nam, Sungho
    Kim, Joonhyeon
    Lee, Hyena
    Kim, Hwajeong
    Ha, Chang-Sik
    Kim, Youngkyoo
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (03) : 1281 - 1288
  • [26] Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films
    Wang, Chenchen
    Duong, Duc T.
    Vandewal, Koen
    Rivnay, Jonathan
    Salleo, Alberto
    PHYSICAL REVIEW B, 2015, 91 (08)
  • [27] Synthesis and Characterization of All-Conjugated Graft Copolymers Comprised of n-Type or p-Type Backbones and Poly(3-hexylthiophene) Side Chains
    Wang, Jin
    Lu, Chien
    Mizobe, Tetsunari
    Ueda, Mitsuru
    Chen, Wen-Chang
    Higashihara, Tomoya
    MACROMOLECULES, 2013, 46 (05) : 1783 - 1793
  • [28] Orientation of nanowires consisting of poly(3-hexylthiophene) using strong magnetic field
    Yonemura, Hiroaki
    Yuno, Koichi
    Yamamoto, Yuuichi
    Yamada, Sunao
    Fujiwara, Yoshihisa
    Tanimoto, Yoshifumi
    SYNTHETIC METALS, 2009, 159 (9-10) : 955 - 960
  • [29] Dioxygen Reactivity with a Ferrocene-Lewis Acid Pairing: Reduction to a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane
    Henthorn, Justin T.
    Agapie, Theodor
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) : 12893 - 12896
  • [30] Atomic-Level Insight into the Postsynthesis Band Gap Engineering of a Lewis Base Polymer Using Lewis Acid Tris(pentafluorophenyl)borane
    Yurash, Brett
    Leifert, Dirk
    Reddy, G. N. Manjunatha
    Cao, David Xi
    Biberger, Simon
    Brus, Viktor V.
    Seifrid, Martin
    Santiago, Peter J.
    Koehler, Anna
    Chmelka, Bradley F.
    Bazan, Guillermo C.
    Thuc-Quyen Nguyen
    CHEMISTRY OF MATERIALS, 2019, 31 (17) : 6715 - 6725