Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications

被引:95
|
作者
Baldridge, T. [1 ]
Poling, G. [2 ]
Foroozmehr, E. [3 ]
Kovacevic, R. [3 ]
Metz, T. [4 ]
Kadekar, V. [4 ]
Gupta, M. C. [1 ]
机构
[1] Univ Virginia, Charlottesville, VA 22904 USA
[2] AREVA NP Inc, Component Repair Technol, Lynchburg, VA 24502 USA
[3] So Methodist Univ, Dallas, TX 75275 USA
[4] Laser Cladding Serv, Houston, TX 77040 USA
基金
美国国家科学基金会;
关键词
Laser cladding; Inconel; Nuclear; Corrosion; Stress corrosion cracking; HIGH-TEMPERATURE BEHAVIOR; BASE WELD METAL; DUCTILITY; ALLOY; RESISTANCE;
D O I
10.1016/j.optlaseng.2012.08.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the nuclear industry there is need for repair of heat exchanger tubes made of high-temperature corrosion-resistant Inconel metals. This work reports the results of applying a 3 mm thick cladding layer by laser melting Inconel 690 powder on top of a 10 mm thick plate of Inconel 600 alloy substrate. Successful multilayer cladding of 3 mm thickness was achieved by scanning the laser beam over the substrate using a powder feeder to control the powder feed rate. Experimental parameters such as laser power, scanning speed, beam overlap, powder feed rate, and preheating were investigated to reduce cracking upon cooling. SEM images show a smooth integral interface between the 600 and 690 materials, and EDS mapping reveals the dilution zone via the concentration gradient of chromium. Vickers tests show the 690 cladding surface to be up to 40% harder than the base 600 material. XRD and EDS analysis confirm that the Inconel 690 composition remains unchanged throughout processing when using argon as a shielding gas. The final laser melted cladding layer appears to be well-suited for surface protection. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [31] Solid-solution effect on microstructure of Inconel690 superalloy
    Zhu, Hong
    Dong, Jianxin
    Zhang, Maicang
    Hu, Yaohe
    Xie, Xishan
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2002, 24 (05):
  • [32] Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy
    A. J. Cooper
    W. J. Brayshaw
    A. H. Sherry
    Metallurgical and Materials Transactions A, 2018, 49 : 1079 - 1089
  • [33] Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy
    Cooper, A. J.
    Brayshaw, W. J.
    Sherry, A. H.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (04): : 1079 - 1089
  • [34] Laser Beam Micromarking on Inconel 625 Superalloy
    Tiwary, A. P.
    Shivakoti, I
    LASERS IN ENGINEERING, 2021, 50 (1-3) : 173 - 191
  • [35] INCONEL ALLOY 690 - A NEW CORROSION RESISTANT MATERIAL.
    Sedriks, A.J.
    Schultz, J.W.
    Cordovi, M.A.
    Boshoku Gijutsu/Corrosion Engineering, 1979, 28 (02): : 82 - 95
  • [36] NiCrAlY/YSZ Double Layer Laser Cladding onto Inconel 713LC Superalloy
    Khorram, A.
    Nicknia, M.
    LASERS IN ENGINEERING, 2024, 57 (1-3) : 23 - 41
  • [37] An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy
    Ansari, M.
    Razavi, R. Shoja
    Barekat, M.
    OPTICS AND LASER TECHNOLOGY, 2016, 86 : 136 - 144
  • [38] Corrosion behavior of Inconel 690 and 693 in an iron phosphate melt
    Zhu, DM
    Kim, CW
    Day, DE
    JOURNAL OF NUCLEAR MATERIALS, 2005, 336 (01) : 47 - 53
  • [39] Corrosion of Inconel-690 electrodes in waste glass melts
    Gan, H
    Buechele, AC
    Kim, CW
    Huang, X
    Mohr, RK
    Pegg, IL
    SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XXII, 1999, 556 : 287 - 294
  • [40] THE OXIDATION OF INCONEL-690 ALLOY AT 600-K IN AIR
    ALLEN, GC
    DYKE, JM
    HARRIS, SJ
    MORRIS, A
    APPLIED SURFACE SCIENCE, 1988, 31 (02) : 220 - 238