Novel Formulation for Optimal Schedule with Demand Side Management in Multiproduct Air Separation Processes

被引:22
|
作者
Zhao, Shengnan [1 ,2 ,3 ]
Ochoa, M. Paz [5 ]
Tang, Lixin [1 ,4 ]
Lotero, Irene [6 ]
Gopalakrishnan, Ajit [6 ]
Grossmann, Ignacio E. [5 ]
机构
[1] Northeastern Univ, Minist Educ, Key Lab Data Analyt & Optimizat Smart Ind, Shenyang, Liaoning, Peoples R China
[2] Northeastern Univ, Liaoning Engn Lab Data Analyt & Optimizat Smart I, Shenyang, Liaoning, Peoples R China
[3] Northeastern Univ, Kiaoning Key Lab Mfg Syst & Logist, Shenyang, Liaoning, Peoples R China
[4] Northeastern Univ, Inst Ind & Syst Engn, Shenyang, Liaoning, Peoples R China
[5] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[6] Air Liquide, Newark, DC 19702 USA
基金
美国安德鲁·梅隆基金会; 中国国家自然科学基金;
关键词
CONTINUOUS-TIME; ELECTRICITY PROCUREMENT; DIFFERENTIAL EVOLUTION; OPTIMIZATION; MODEL; FRAMEWORK; DESIGN; PLANTS; SCOPE;
D O I
10.1021/acs.iecr.8b04964
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this article, we address the optimal scheduling of continuous air separation processes with electricity purchased from the day-ahead market, for which we propose a generalized framework to represent different operating states. Specifically, a discrete-time mixed integer linear programming (MILP) model is developed based on this representation for operating states, which has proven to provide a tight LP relaxation for handling industrial-scale instances. The computational efficiency of the model is demonstrated with data from real industrial production. The response of the scheduling and production level is also tested with various interval lengths for the electricity pricing and length of the time horizon.
引用
收藏
页码:3104 / 3117
页数:14
相关论文
共 50 条
  • [21] Demand Side Management Scheduling Formulation for a Steel Plant Considering Electrode Degradation
    Ave, Giancarlo Dalle
    Hernandez, Jesus
    Harjunkoski, Iiro
    Onofri, Luca
    Engell, Sebastian
    IFAC PAPERSONLINE, 2019, 52 (01): : 691 - 696
  • [22] Optimal configuration method of CCHP microgrid considering demand side management
    Zhu H.
    Ma R.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (02): : 139 - 146
  • [23] Optimal power tracking for autonomous demand side management of electric vehicles
    Ireshika, Muhandiram Arachchige Subodha Tharangi
    Rheinberger, Klaus
    Lliuyacc-Blas, Ruben
    Kolhe, Mohan Lal
    Preissinger, Markus
    Kepplinger, Peter
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [24] Optimal demand Side Management for the Sparse Scheduling of Smart Charge of EVs
    Montes de Oca, Sebastian
    Monzon, Pablo
    Belzarena, Pablo
    2020 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D LA), 2020,
  • [25] Optimal Energy Management in a Smart Micro Grid with Demand Side Participation
    Tseng, Cheng-Jui
    Dwijendra, Ngakan Ketut Acwin
    Opulencia, Maria Jade Catalan
    Ganieva, Sarvinoz
    Muda, Iskandar
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2022, 26 (01) : 228 - 239
  • [26] Optimal demand side management by distributed and secured energy commitment framework
    Chakraborty, Shantanu
    Okabe, Toshiya
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (14) : 3610 - 3621
  • [27] A demand side management scheme for optimal power scheduling of industrial loads
    Sardar, Azka
    Khan, Saad Ullah
    Hassan, Muhammad Azhar
    Qureshi, Ijaz Mansoor
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2023, 14 (02): : 335 - 356
  • [28] An optimal demand side management for microgrid cost minimization considering renewables
    Pinninti, Swarupa
    Sura, Srinivasa Rao
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2025, 46 (01): : 197 - 214
  • [29] On the optimal demand-side management in microgrids through polygonal composition
    Topa, A. O.
    Cruz, N. C.
    Alvarez, J. D.
    Torres, J. L.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34
  • [30] Optimal Clustering of Time Periods for Electricity Demand-Side Management
    Rogers, David F.
    Polak, George G.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 3842 - 3851