Self-Accelerating CO Sorption in a Soft Nanoporous Crystal

被引:396
|
作者
Sato, Hiroshi [1 ,2 ]
Kosaka, Wataru [1 ,2 ]
Matsuda, Ryotaro [1 ,2 ]
Hori, Akihiro [2 ]
Hijikata, Yuh [3 ]
Belosludov, Rodion V. [4 ]
Sakaki, Shigeyoshi [3 ]
Takata, Masaki [2 ,5 ]
Kitagawa, Susumu [1 ,2 ,6 ]
机构
[1] Kyoto Univ, Inst Integrated Cell Mat Sci WPI ICeMS, Kyoto 6158510, Japan
[2] RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan
[3] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[5] Japan Synchrotron Radiat Res Inst SPring 8, Sayo, Hyogo 6795198, Japan
[6] Kyoto Univ, Grad Sch Engn, Dept Synthet Chem & Biol Chem, Kyoto 6158510, Japan
基金
日本科学技术振兴机构;
关键词
METAL-ORGANIC FRAMEWORKS; ADSORPTION PROPERTIES; COORDINATION-POLYMER; CAPTURE; GASES;
D O I
10.1126/science.1246423
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N-2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable pores, and we present crystallographic evidence that CO molecules can coordinate with copper(II) ions. The unprecedented high selectivity was achieved by the synergetic effect of the local interaction between CO and accessible metal sites and a global transformation of the framework. This transformable crystalline material realized the separation of CO from mixtures with N-2, a gas that is the most competitive to CO. The dynamic and efficient molecular trapping and releasing system is reminiscent of sophisticated biological systems such as heme proteins.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 50 条
  • [41] Control and novel applications of self-accelerating beams
    Chen Z.
    Xu J.
    Hu Y.
    Song D.
    Zhang Z.
    Zhao J.
    Liang Y.
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2016, 36 (10):
  • [42] Dynamical behavior of self-accelerating beams in LiNbO3 crystal with background illumination
    Zhang, Meizhi
    Zhang, Tongyi
    Huo, Guangwen
    Zha, Xinwei
    Hui, Zhanqiang
    Zhou, Hua
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (12):
  • [43] DETERMINATION OF SELF-ACCELERATING DECOMPOSITION TEMPERATURES USING THE ACCELERATING RATE CALORIMETER
    FISHER, HG
    GOETZ, DD
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 1991, 4 (05) : 305 - 316
  • [44] Covariant Galileon and a consistent self-accelerating universe
    Germani, Cristiano
    [J]. PHYSICAL REVIEW D, 2012, 86 (10):
  • [45] Experimental study on self-accelerating turbidity currents
    Sequeiros, Octavio E.
    Naruse, Hajime
    Endo, Noritaka
    Garcia, Marcelo H.
    Parker, Gary
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2009, 114
  • [46] Self-accelerating wave packets in free space
    Turker, Zalihe Ozcakmakli
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (03):
  • [47] Perfect mirrors and the self-accelerating box paradox
    Marolf, D
    Sorkin, RD
    [J]. PHYSICAL REVIEW D, 2002, 66 (10):
  • [48] Dynamical behavior of self-accelerating beams in LiNbO3 crystal with background illumination
    Meizhi Zhang
    Tongyi Zhang
    Guangwen Huo
    Xinwei Zha
    Zhanqiang Hui
    Hua Zhou
    [J]. Applied Physics B, 2018, 124
  • [49] THEORY OF THERMAL EXPLOSION OF SELF-ACCELERATING REACTIONS
    BARZYKIN, VV
    GONTKOVS.VT
    MERZHANO.AG
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 1966, 2 (04) : 11 - &
  • [50] Internal Structure of a Self-Accelerating Turbidity Current
    Sequeiros, Octavio E.
    Mosquera, Rodrigo
    Pedocchi, Francisco
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (09) : 6260 - 6276