Self-Accelerating CO Sorption in a Soft Nanoporous Crystal

被引:396
|
作者
Sato, Hiroshi [1 ,2 ]
Kosaka, Wataru [1 ,2 ]
Matsuda, Ryotaro [1 ,2 ]
Hori, Akihiro [2 ]
Hijikata, Yuh [3 ]
Belosludov, Rodion V. [4 ]
Sakaki, Shigeyoshi [3 ]
Takata, Masaki [2 ,5 ]
Kitagawa, Susumu [1 ,2 ,6 ]
机构
[1] Kyoto Univ, Inst Integrated Cell Mat Sci WPI ICeMS, Kyoto 6158510, Japan
[2] RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan
[3] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[5] Japan Synchrotron Radiat Res Inst SPring 8, Sayo, Hyogo 6795198, Japan
[6] Kyoto Univ, Grad Sch Engn, Dept Synthet Chem & Biol Chem, Kyoto 6158510, Japan
基金
日本科学技术振兴机构;
关键词
METAL-ORGANIC FRAMEWORKS; ADSORPTION PROPERTIES; COORDINATION-POLYMER; CAPTURE; GASES;
D O I
10.1126/science.1246423
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N-2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable pores, and we present crystallographic evidence that CO molecules can coordinate with copper(II) ions. The unprecedented high selectivity was achieved by the synergetic effect of the local interaction between CO and accessible metal sites and a global transformation of the framework. This transformable crystalline material realized the separation of CO from mixtures with N-2, a gas that is the most competitive to CO. The dynamic and efficient molecular trapping and releasing system is reminiscent of sophisticated biological systems such as heme proteins.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 50 条
  • [1] Self-Accelerating Beams in Photonic Crystal Slabs
    Kaminer, Ido
    Nemirovsky, Jonathan
    Makris, Konstantinos G.
    Segev, Mordechai
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [2] Self-accelerating solitons
    Malomed, Boris A.
    [J]. EPL, 2022, 140 (02)
  • [3] ON THE SELF-ACCELERATING ELECTRON
    ASHAUER, S
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1947, 43 (04): : 506 - 510
  • [4] Diametrically Driven Self-Accelerating Pulses in a Photonic Crystal Fiber
    Batz, Sascha
    Peschel, Ulf
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [5] Ghosts in the self-accelerating universe
    Koyama, Kazuya
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (24) : R231 - R253
  • [6] Self-accelerating matter waves
    Yuce, C.
    [J]. MODERN PHYSICS LETTERS B, 2015, 29 (28):
  • [7] THE SELF-ACCELERATING EFFECTS OF INFLATION
    SHINNAR, R
    DRESSLER, O
    [J]. CHEMICAL ENGINEERING PROGRESS, 1982, 78 (12) : 11 - 17
  • [8] Radially Self-Accelerating Beams
    Vetter, Christian
    Eichelkraut, Toni
    Ornigotti, Marco
    Szameit, Alexander
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [9] Incoherent self-accelerating beams
    Lumer, Yaakov
    Liang, Yi
    Schley, Ran
    Kaminer, Ido
    Greenfield, Elad
    Song, Daohong
    Zhang, Xinzheng
    Xu, Jingjun
    Chen, Zhigang
    Segev, Mordechai
    [J]. OPTICA, 2015, 2 (10): : 886 - 892
  • [10] Bubbles in the self-accelerating universe
    Izumi, Keisuke
    Koyama, Kazuya
    Pujolas, Oriol
    Tanaka, Takahiro
    [J]. PHYSICAL REVIEW D, 2007, 76 (10):