Robust Head Tracking Based on Multiple Cues Fusion in the Kernel-Bayesian Framework

被引:13
|
作者
Zhang, Xiaoqin [1 ]
Hu, Weiming [2 ]
Bao, Hujun [3 ]
Maybank, Steve [4 ]
机构
[1] Wenzhou Univ, Inst Intelligent Syst & Decis, Wenzhou 325035, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100864, Peoples R China
[3] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Zhejiang, Peoples R China
[4] Univ London Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, England
基金
美国国家科学基金会; 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Chamfer matching; kernel-Bayesian framework; mixture of Gaussians (MoG); selective updating; VISUAL TRACKING; OBJECT TRACKING; MODELS;
D O I
10.1109/TCSVT.2013.2241354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a robust head tracking algorithm based on multiple cues fusion in a kernel-Bayesian framework. In this algorithm, the object to be tracked is characterized using a spatial-constraint mixture of the Gaussians-based appearance model and a multichannel chamfer matching-based shape model. These two models complement each other and their combination is discriminative in distinguishing the object from the background. A selective updating technique for the appearance model is employed to accommodate appearance and illumination changes. Meantime, the kernel method-mean shift algorithm is embedded into the Bayesian framework to give a heuristic prediction in the hypotheses generation process. This alleviates the great computational load suffered by conventional Bayesian trackers. Experimental results demonstrate that the proposed algorithm is effective.
引用
收藏
页码:1197 / 1208
页数:12
相关论文
共 50 条
  • [31] MULTIPLE FACES TRACKING BASED ON JOINT KERNEL DENSITY ESTIMATION AND ROBUST FEATURE DESCRIPTORS
    Ji, Hao
    Su, Fei
    Du, Geng
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT, PROCEEDINGS, 2009, : 680 - 685
  • [32] MULTIPLE-KERNEL ADAPTIVE SEGMENTATION AND TRACKING (MAST) FOR ROBUST OBJECT TRACKING
    Tang, Zheng
    Hwang, Jenq-Neng
    Lin, Yen-Shuo
    Chuang, Jen-Hui
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1115 - 1119
  • [33] Kernel-based Bayesian filtering for object tracking
    Han, BY
    Zhu, Y
    Comaniciu, D
    Davis, L
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 227 - 234
  • [34] Deformable Bayesian Network: A Robust Framework for Underwater Sensor Fusion
    Kampa, Kittipat
    Hasanbelliu, Erion
    Cobb, J. Tory
    Principe, Jose C.
    Slatton, K. Clint
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2012, 37 (02) : 166 - 184
  • [35] Brain-Inspired Framework for Fusion of Multiple Depth Cues
    Li, Chung-Te
    Lai, Yen-Chieh
    Wu, Chien
    Tsai, Sung-Fang
    Chen, Tung-Chien
    Chien, Shao-Yi
    Chen, Liang-Gee
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (07) : 1137 - 1149
  • [36] Kernel Fusion of Multiple Histogram Descriptors for Robust Face Recognition
    Chan, Chi-Ho
    Kittler, Josef
    Tahir, Muhammad Atif
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 718 - 727
  • [37] Robust video object tracking via Bayesian model averaging-based feature fusion
    Dai, Yi
    Liu, Bin
    [J]. OPTICAL ENGINEERING, 2016, 55 (08)
  • [38] Fusion of corners from multiple scales for robust tracking
    Mohanna, F
    Mokhtarian, F
    [J]. PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 765 - 768
  • [39] Real-time object tracking of a robot head based on multiple visual cues integration
    Pang, Yunting
    Huang, Qiang
    Zhang, Weimin
    Hu, Zhangfeng
    Rajpar, Altaf Hussain
    Li, Kejie
    [J]. 2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 686 - +
  • [40] Adaptive Multiple Cues Integration for Robust Outdoor Vehicle Visual Tracking
    Xin Jing
    Liu Xiao-dan
    Ran Bao-jing
    Liu Ding
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4913 - 4918