Anisotropic elliptic problems;
Local Holder continuity;
Intrinsic scaling method;
GENERAL GROWTH-CONDITIONS;
VARIATIONAL-PROBLEMS;
INTEGRAL FUNCTIONALS;
NONSTANDARD GROWTH;
SOBOLEV SPACES;
REGULARITY;
MINIMIZERS;
BOUNDEDNESS;
EXISTENCE;
D O I:
10.1007/s00030-012-0160-7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove, following DiBenedetto's intrinsic scaling method, that a local bounded weak solution of the equation -Sigma(N)(i=1) partial derivative/partial derivative x(i) [vertical bar partial derivative u/partial derivative x(i)vertical bar(p)(i-2) partial derivative u/partial derivative x(i)] = f in Omega, is locally Holder continuous, where f is a given bounded function and p(i) >= 2, for any i = 1, . . . , N.
机构:
Tech Univ Brno, Fac Civil Engn, Dept Math, Zizkova 17, Brno 60200, Czech RepublicTech Univ Brno, Fac Civil Engn, Dept Math, Zizkova 17, Brno 60200, Czech Republic
Danecek, Josef
John, Oldrich
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, CR-18600 Prague 8, Czech RepublicTech Univ Brno, Fac Civil Engn, Dept Math, Zizkova 17, Brno 60200, Czech Republic