Generating functions for actions on handlebodies with genus zero quotient

被引:0
|
作者
Compton, M [1 ]
Miller, A [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.1998.2952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group G and a nonnegative integer g, let Q(g) denote the number of q-equivalence classes of orientation-preserving G-actions on the handlebody of genus g which have genus zero quotient. Let q(z) = Sigma(g greater than or equal to 0) Q(g)z(g) be the associated generating function. When G has at most one involution, we show that q(z) is a rational function whose poles are roots of unity. We prove a partial converse showing that when G has more than one involution, q(z) is either irrational or has a pole in the open disk {\z\ < 1}. In the case where G has at most one involution, we obtain an asymptotic approximation for Q(g) by analyzing a finite poset which embodies information about generating multisets of G. A finer approximation is found when G is cyclic. (C) 1999 Academic Press.
引用
收藏
页码:151 / 174
页数:24
相关论文
共 50 条
  • [21] Modular equations and the genus zero property of moonshine functions
    Cummins, CJ
    Gannon, T
    [J]. INVENTIONES MATHEMATICAE, 1997, 129 (03) : 413 - 443
  • [22] Modular equations and the genus zero property of moonshine functions
    C.J. Cummins
    T. Gannon
    [J]. Inventiones mathematicae, 1997, 129 : 413 - 443
  • [23] Generalized moonshine I: Genus-zero functions
    Carnahan, Scott
    [J]. ALGEBRA & NUMBER THEORY, 2010, 4 (06) : 649 - 679
  • [24] RECIPROCAL AND QUOTIENT GENERATING ADCS
    BYWATER, REH
    MANSI, LSA
    [J]. ELECTRONIC ENGINEERING, 1980, 52 (635): : 25 - 25
  • [25] On the genus of a quotient of a numerical semigroup
    Adeniran, Ayomikun
    Butler, Steve
    Defant, Colin
    Gao, Yibo
    Harris, Pamela E.
    Hettle, Cyrus
    Liang, Qingzhong
    Nam, Hayan
    Volk, Adam
    [J]. SEMIGROUP FORUM, 2019, 98 (03) : 690 - 700
  • [26] On rational functions whose normalization has genus zero or one
    Pakovich, Fedor
    [J]. ACTA ARITHMETICA, 2018, 182 (01) : 73 - 100
  • [27] FORMULAS FOR THE FOURIER COEFFICIENTS OF SOME GENUS ZERO MODULAR FUNCTIONS
    Ohta, Kaori
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (01) : 1 - 15
  • [28] On the genus of a quotient of a numerical semigroup
    Ayomikun Adeniran
    Steve Butler
    Colin Defant
    Yibo Gao
    Pamela E. Harris
    Cyrus Hettle
    Qingzhong Liang
    Hayan Nam
    Adam Volk
    [J]. Semigroup Forum, 2019, 98 : 690 - 700
  • [29] BORELIAN FUNCTIONS ON QUOTIENT
    SAINTRAYMOND, J
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1976, 100 (02): : 141 - 147
  • [30] On volume quotient functions
    Zhao, Chang-Jian
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 57 - 67