Atrial fibrillation prediction by combining ECG markers and CMR radiomics

被引:3
|
作者
Pujadas, Esmeralda Ruiz [1 ]
Raisi-Estabragh, Zahra [2 ,3 ]
Szabo, Liliana [2 ,3 ]
Morcillo, Cristian Izquierdo [1 ]
Campello, Victor M. [1 ]
Martin-Isla, Carlos [1 ]
Vago, Hajnalka [4 ]
Merkely, Bela [4 ]
Harvey, Nicholas C. [5 ,6 ]
Petersen, Steffen E. [2 ,3 ,7 ,8 ]
Lekadir, Karim [1 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Artificial Intelligence Med Lab BCN AIM, Barcelona, Spain
[2] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, Charterhouse Sq, London EC1M 6BQ, England
[3] Barts Hlth NHS Trust, Barts Heart Ctr, St Bartholomews Hosp, London EC1A 7BE, England
[4] Semmelweis Univ Heart & Vasc Ctr, Budapest, Hungary
[5] Univ Southampton, MRC Lifecourse Epidemiol Ctr, Southampton, Hants, England
[6] Univ Southampton, NIHR Southampton Biomed Res Ctr, Univ Hosp Southampton NHS Fdn Trust, Southampton, Hants, England
[7] Hlth Data Res UK, London, England
[8] Alan Turing Inst, London, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
CLASSIFICATION; EPIDEMIOLOGY;
D O I
10.1038/s41598-022-21663-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Atrial fibrillation prediction by combining ECG markers and CMR radiomics
    Esmeralda Ruiz Pujadas
    Zahra Raisi-Estabragh
    Liliana Szabo
    Cristian Izquierdo Morcillo
    Víctor M. Campello
    Carlos Martin-Isla
    Hajnalka Vago
    Bela Merkely
    Nicholas C. Harvey
    Steffen E. Petersen
    Karim Lekadir
    [J]. Scientific Reports, 12
  • [2] Atrial Fibrillation and Left Atrial CMR
    Sagnard, Audrey
    Leclercq, Thibault
    Bejot, Yannick
    Lorgis, Luc
    Guenancia, Charles
    [J]. JACC-CARDIOVASCULAR IMAGING, 2021, 14 (03) : 704 - 704
  • [3] Deep Learning of ECG for the Prediction of Postoperative Atrial Fibrillation
    Tohyama, Takeshi
    Ide, Tomomi
    Ikeda, Masataka
    Nagata, Takuya
    Tagawa, Koshiro
    Hirose, Masayuki
    Funakoshi, Kouta
    Sakamoto, Kazuo
    Kishimoto, Junji
    Todaka, Koji
    Nakashima, Naoki
    Tsutsui, Hiroyuki
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2023, 16 (02): : 110 - 112
  • [4] Combining Rhythmic and Morphological ECG Features for Automatic Detection of Atrial Fibrillation
    Laudato, Gennaro
    Boldi, Franco
    Colavita, Angela Rita
    Rosa, Giovanni
    Scalabrino, Simone
    Torchitti, Paolo
    Lazich, Aldo
    Oliveto, Rocco
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2020, : 156 - 165
  • [5] Atrial Fibrillation Onset Prediction Using Variability of ECG Signals
    Costin, Hariton
    Rotariu, Cristian
    Pasarica, Alexandru
    [J]. 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013,
  • [6] ECG-derived Markers to Identify Patients Prone to Atrial Fibrillation
    Luca, Adrian
    Yazdani, Sasan
    Viso, Alain
    Vesin, Jean-Marc
    Conti, Giulio
    Auricchio, Angelo
    [J]. 2016 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 43, 2016, 43 : 977 - 980
  • [7] ATRIAL ECG DYNAMICS IN ATRIAL FIBRILLATION
    McDermott, Laura
    Bohorquez, Jorge
    Zaatari, Ghaith
    Mitrani, Raul D.
    Velasquez, Alex H.
    Lambrakos, Litsa Konstance
    Goldberger, Jeffrey J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 195 - 195
  • [8] Risk prediction of atrial fibrillation in the community combining biomarkers and genetics
    Boerschel, C.
    Ohlrogge, A.
    Geelhoed, B.
    Niiranen, T.
    Havulinna, A. S.
    Palosaari, T.
    Blankenberg, S.
    Zeller, T.
    Salomaa, V.
    Schnabel, R. B.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 : 3000 - 3000
  • [9] Risk prediction of atrial fibrillation in the community combining biomarkers and genetics
    Boerschel, Christin S.
    Ohlrogge, Amelie H.
    Geelhoed, Bastiaan
    Niiranen, Teemu
    Havulinna, Aki S.
    Palosaari, Tarja
    Jousilahti, Pekka
    Rienstra, Michiel
    van der Harst, Pim
    Blankenberg, Stefan
    Zeller, Tanja
    Salomaa, Veikko
    Schnabel, Renate B.
    [J]. EUROPACE, 2021, 23 (05): : 674 - 681
  • [10] Prediction of spontaneous termination of atrial fibrillation in surface ECG by frequency analysis
    Xi, Q
    Shkurovich, S
    [J]. Computers in Cardiology 2004, Vol 31, 2004, 31 : 113 - 116