Deep Learning of ECG for the Prediction of Postoperative Atrial Fibrillation

被引:7
|
作者
Tohyama, Takeshi [1 ,3 ,5 ]
Ide, Tomomi [3 ,6 ]
Ikeda, Masataka [3 ,4 ]
Nagata, Takuya [3 ]
Tagawa, Koshiro [1 ]
Hirose, Masayuki [1 ]
Funakoshi, Kouta [1 ]
Sakamoto, Kazuo [3 ]
Kishimoto, Junji
Todaka, Koji [1 ]
Nakashima, Naoki [2 ]
Tsutsui, Hiroyuki [3 ]
机构
[1] Kyushu Univ Hosp, Ctr Clin & Translat Res, Fukuoka, Japan
[2] Kyushu Univ Hosp, Med Informat Ctr, Fukuoka, Japan
[3] Kyushu Univ, Fac Med Sci, Dept Cardiovasc Med, Fukuoka, Japan
[4] Kyushu Univ, Fac Med Sci, Dept Immunoregulatory Cardiovasc Med, Fukuoka, Japan
[5] Kyushu Univ Hosp, Ctr Clin & Translat Res, 3-1-1 Maidashi,Higashi Ku, Fukuoka, Fukuoka 8128582, Japan
[6] Kyushu Univ, Fac Med Sci, Dept Cardiovasc Med, 3-1-1 Maidashi,Higashi Ku, Fukuoka, Fukuoka 8128582, Japan
来源
基金
日本学术振兴会;
关键词
atrial fibrillation; cohort studies; hospital mortality; postoperative complications; predictive value of tests;
D O I
10.1161/CIRCEP.122.011579
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:110 / 112
页数:3
相关论文
共 50 条
  • [1] SHORT TERM PREDICTION OF ATRIAL FIBRILLATION FROM AMBULATORY ECG USING DEEP LEARNING
    Henry, Christine
    Singh, Jagmeet P.
    Fontanarava, Julien
    de Masse, Gregoire
    Carbonati, Tanner
    Gardella, Christophe
    Fiorina, Laurent
    Li, Jia
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2015 - 2015
  • [2] Beatwise ECG Classification for the Detection of Atrial Fibrillation with Deep Learning
    Yang, Jiayuan
    Smaill, Bruce H.
    Gladding, Patrick
    Zhao, Jichao
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [3] Application of Deep Learning for Quality Assessment of Atrial Fibrillation ECG Recordings
    Huerta, Alvaro
    Martinez-Rodrigo, Arturo
    Arias, Miguel A.
    Langley, Philip
    Rieta, Jose J.
    Alcaraz, Raul
    [J]. 2020 COMPUTING IN CARDIOLOGY, 2020,
  • [4] Automated Classification of Atrial Fibrillation and Atrial Flutter in ECG Signals based on Deep Learning
    Zhang, Huimin
    Qiu, Lishen
    Zhu, Wenliang
    Cai, Wenqiang
    Wang, Lirong
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1498 - 1502
  • [5] RawECGNet: Deep Learning Generalization for Atrial Fibrillation Detection From the Raw ECG
    Ben-Moshe, Noam
    Tsutsui, Kenta
    Brimer, Shany Biton
    Zvuloni, Eran
    Sornmo, Leif
    Behar, Joachim A.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (09) : 5180 - 5188
  • [6] Prediction of postoperative atrial fibrillation with postoperative epicardial electrograms
    Rasmussen, Louise Feilberg
    Andreasen, Jan Jesper
    Riahi, Sam
    Lip, Gregory Y. H.
    Lundbye-Christensen, Soren
    Melgaard, Jacob
    Graff, Claus
    [J]. SCANDINAVIAN CARDIOVASCULAR JOURNAL, 2022, 56 (01) : 378 - 386
  • [7] Paroxysmal atrial fibrillation prediction based on morphological variant P-wave analysis with wideband ECG and deep learning
    Tzou, Heng-An
    Lin, Shien-Fong
    Chen, Peng-Sheng
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211
  • [8] ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation
    Khurshid, Shaan
    Friedman, Samuel
    Reeder, Christopher
    Di Achille, Paolo
    Diamant, Nathaniel
    Singh, Pulkit
    Harrington, Lia X.
    Wang, Xin
    Al-Alusi, Mostafa A.
    Sarma, Gopal
    Foulkes, Andrea S.
    Ellinor, Patrick T.
    Anderson, Christopher D.
    Ho, Jennifer E.
    Philippakis, Anthony A.
    Batra, Puneet
    Lubitz, Steven A.
    [J]. CIRCULATION, 2022, 145 (02) : 122 - 133
  • [9] SEResUTer: a deep learning approach for accurate ECG signal delineation and atrial fibrillation detection
    Li, Xinyue
    Cai, Wenjie
    Xu, Bolin
    Jiang, Yupeng
    Qi, Mengdi
    Wang, Mingjie
    [J]. PHYSIOLOGICAL MEASUREMENT, 2023, 44 (12)
  • [10] Predicting Postoperative Atrial Fibrillation from Independent ECG Components
    Chia, Chih-Chun
    Blum, James
    Karam, Zahi
    Singh, Satinder
    Syed, Zeeshan
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1178 - 1184