Quantum stabilizer codes and classical linear codes

被引:23
|
作者
Cleve, R [1 ]
机构
[1] UNIV CALIF SANTA BARBARA, INST THEORET PHYS, SANTA BARBARA, CA 93106 USA
关键词
D O I
10.1103/PhysRevA.55.4054
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that within any quantum stabilizer code there lurks a classical binary linear code with similar error-correcting capabilities. Using this result--which applies to degenerate as well as nondegenerate codes--previously established necessary conditions for classical linear codes can be easily translated into necessary conditions for quantum stabilizer codes. Examples of specific consequences are as follows: for a quantum channel subject to a delta fraction of errors, the best asymptotic capacity attainable by ally stabilizer code cannot exceed H(1/2+root 2 delta(1-2 delta)); and, for the depolarizing channel with fidelity parameter delta, the best asymptotic capacity attainable by any stabilizer code cannot exceed 1-H(delta).
引用
收藏
页码:4054 / 4059
页数:6
相关论文
共 50 条
  • [21] On quantum and classical BCH codes
    Aly, Salah A.
    Klappenecker, Andreas
    Sarvepalli, Pradeep Kiran
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) : 1183 - 1188
  • [22] Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing
    Matsumoto, Ryutaroh
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (12): : 2738 - 2739
  • [23] Efficient local operations and classical communication extraction of quantum information encoded in stabilizer codes
    Shiraishi, Koki
    Yamasaki, Hayata
    Murao, Mio
    [J]. Physical Review A, 2024, 110 (05)
  • [24] Stabilizer Formalism for Generalized Concatenated Quantum Codes
    Wang, Yun-Jiang
    Zeng, Bei
    Grassl, Markus
    Sanders, Barry C.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 529 - +
  • [25] Construction of minimal trellises for quantum stabilizer codes
    FangYing Xiao
    HanWu Chen
    [J]. Science China Information Sciences, 2013, 56 : 1 - 11
  • [26] Construction of minimal trellises for quantum stabilizer codes
    XIAO FangYing
    CHEN HanWu
    [J]. Science China(Information Sciences), 2013, 56 (01) : 208 - 218
  • [27] Construction of minimal trellises for quantum stabilizer codes
    Xiao FangYing
    Chen HanWu
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (01) : 1 - 11
  • [28] Quantum Stabilizer Codes from Maximal Curves
    Jin, Lingfei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 313 - 316
  • [29] Quantum Stabilizer Codes From Difference Sets
    Xie, Yixuan
    Yuan, Jinhong
    Malaney, Robert
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 524 - 528
  • [30] Family of fast quantum stabilizer codes constructions
    Li, Yuan
    Liu, Xingxiang
    [J]. OPTICAL REVIEW, 2010, 17 (02) : 47 - 49