Existence of an unbounded branch of the set of solutions for equations of p(x)-Laplace type

被引:2
|
作者
Kim, Yun-Ho [1 ]
机构
[1] Sangmyung Univ, Dept Math Educ, Seoul 110743, South Korea
来源
关键词
p(x)-Laplacian; variable exponent Lebesgue-Sobolev spaces; weak solution; eigenvalue; DEGENERATE ELLIPTIC-EQUATIONS; GLOBAL BIFURCATION; VARIABLE EXPONENT; SOBOLEV SPACES; EIGENVALUES;
D O I
10.1186/1687-2770-2014-27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following nonlinear problem -div(phi(x,vertical bar del u vertical bar del u)=mu vertical bar u vertical bar-(p(x)-2)u + f(lambda,x,u,del u) in Omega subject to Dirichlet boundary conditions, provided that mu is not an eigenvalue of the p(x)-Laplacian. The purpose of this paper is to study the global behavior of the set of solutions for nonlinear equations of p(x)-Laplacian type by applying a bifurcation result for nonlinear operator equations.
引用
收藏
页数:20
相关论文
共 50 条