Connected [k,k+1]-factors of graphs

被引:7
|
作者
Cai, MC [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(95)00328-T
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an odd integer greater than or equal to 3, and G be a connected graph of odd order n with n greater than or equal to 4k - 3, and minimum degree at least k. In this paper it is proved that if for each pair of nonadjacent vertices u, v in G max{d(G)(u), d(G)(v)}greater than or equal to n/2, then G has an almost k(+/-)-factor F+/- and a matching M such that F- and M are edge-disjoint and F- + M is a connected [k, k + 1]-factor of G (an almost k(+/-)-factor F+/- is a factor that every vertex has degree k except at most one with degree k +/- 1). As an immediate consequence, the result gives a solution to a problem of Kano on the existence of connected [k, k + 1]-factors.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] The extensibility of Diophantine pairs {k-1, k+1}
    Fujita, Yasutsugu
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (02) : 322 - 353
  • [42] On k- versus (k+1)-leaf powers
    Brandstaedt, Andreas
    Wagner, Peter
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 171 - 179
  • [43] ON CONNECTED FACTORS IN K1,3-FREE GRAPHS
    李国君
    刘振宏
    [J]. Acta Mathematicae Applicatae Sinica, 1998, (01) : 43 - 47
  • [44] Sets of k-recurrence but not (k+1)-recurrence
    Frantzikinakis, Nikos
    Lesigne, Emmanuel
    Wierdl, Mate
    [J]. ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) : 839 - 849
  • [45] A DEGREE CONDITION FOR THE EXISTENCE OF CONNECTED [k, k + 1]-FACTORS
    CAI Maocheng (Institute of Systems Science
    [J]. Journal of Systems Science & Complexity, 1995, (04) : 364 - 368
  • [46] Radius of (2k-1)-connected graphs
    Egawa, Y
    Inoue, K
    [J]. ARS COMBINATORIA, 1999, 51 : 89 - 95
  • [47] Exactly (k, 1) transformations on connected linear graphs
    Harrold, OG
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 823 - 834
  • [48] Independent (k+1)-domination in k-trees
    Borowiecki, Mieczyslaw
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    Tuza, Zsolt
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 284 : 99 - 110
  • [49] 从N=k到N=k+1
    翟连林
    岳荫巍
    [J]. 中学数学教学, 1984, (05) : 25 - 28
  • [50] A K Out of K+1 Visual Cryptography Scheme
    Liu, Benlan
    Li, Shundong
    Wang, Daoshun
    [J]. PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 1636 - 1641