Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems

被引:16
|
作者
Hansen, Maike M. K. [1 ]
Rosquelles, Marta Ventosa [1 ]
Yelleswarapu, Maaruthy [1 ]
Maas, Roel J. M. [1 ]
van Vugt-Jonker, Aafke J. [1 ]
Heus, Hans A. [1 ]
Huck, Wilhelm T. S. [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
来源
ACS SYNTHETIC BIOLOGY | 2016年 / 5卷 / 12期
基金
欧洲研究理事会;
关键词
uncoupling; cell-free; ribosomes; transcription; translation; DNA TOPOISOMERASE-I; ESCHERICHIA-COLI; TRANSLATIONAL EFFICIENCY; QUANTITATIVE-ANALYSIS; SECONDARY STRUCTURE; ACTIVE PROTEINS; RNA-POLYMERASE; TRANSCRIPTION; RIBOSOME; BINDING;
D O I
10.1021/acssynbio.6b00010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Secondary structure formation of mRNA, caused by desynchronization of transcription and translation, is known to impact gene expression in vivo. Yet, inactivation of mRNA by secondary structures in cell-free protein expression is frequently overlooked. Transcription and translation rates are often not highly synchronized in cell-free expression systems, leading to a temporal mismatch between the processes and a drop in efficiency of protein production. By devising a cell-free gene expression platform in which transcriptional and translational elongation are successfully performed independently, we determine that sequence-dependent mRNA secondary structures are the main cause of mRNA inactivation in in vitro gene expression.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 50 条
  • [41] Saccharides Create a Crowding Environment for Gene Expression in Cell-Free Systems
    Bai, Lihui
    Guo, Xiaocui
    Zhang, Xue
    Yu, Wenting
    Yang, Dayong
    LANGMUIR, 2019, 35 (17) : 5931 - 5936
  • [42] Universal cell-free protein synthesis
    James R Swartz
    Nature Biotechnology, 2009, 27 : 731 - 732
  • [43] Cell-free protein synthesis on a microchip
    Tabuchi, M
    Hino, M
    Shinohara, Y
    Baba, Y
    PROTEOMICS, 2002, 2 (04) : 430 - 435
  • [44] Universal cell-free protein synthesis
    Swartz, James R.
    NATURE BIOTECHNOLOGY, 2009, 27 (08) : 731 - 732
  • [45] Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers
    Friddin, Mark S.
    Morgan, Hywel
    de Planque, Maurits R. R.
    BIOMICROFLUIDICS, 2013, 7 (01):
  • [46] Screening for soluble expression constructs using cell-free protein synthesis
    Lamla, T.
    Hoerer, S.
    Bauer, M. M. T.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2006, 39 (1-3) : 111 - 121
  • [47] Combinatorial, Selective and Reversible Control of Gene Expression Using Oligodeoxynucleotides in a Cell-Free Protein Synthesis System
    Keum, Jung-Won
    Ahn, Jin-Ho
    Kang, Taek Jin
    Kim, Dong-Myung
    BIOTECHNOLOGY AND BIOENGINEERING, 2009, 102 (02) : 577 - 582
  • [48] Expression without boundaries: Cell-free protein synthesis in pharmaceutical research
    Casteleijn, Marco G.
    Urtti, Arto
    Sarkhel, Sanjay
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 440 (01) : 39 - 47
  • [49] ALBUMIN SYNTHESIS IN CELL-FREE SYSTEMS
    MAENO, H
    SCHREIBER, G
    WEIGAND, K
    WEINSSEN, U
    ZAHRINGER, J
    ROTERMUND, HM
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1969, 350 (10): : 1165 - +
  • [50] Modeling Cell-Free Protein Synthesis Systems-Approaches and Applications
    Mueller, Jan
    Siemann-Herzberg, Martin
    Takors, Ralf
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8