Maximum-Likelihood Maximum-Entropy Constrained Probability Density Function Estimation for Prediction of Rare Events

被引:18
|
作者
Ahooyi, Taha Mohseni [1 ]
Soroush, Masoud [1 ]
Arbogast, Jeffrey E. [2 ]
Seider, Warren D. [3 ]
Oktem, Ulku G. [4 ]
机构
[1] Drexel Univ, Dept Chem & Biol Engn, Philadelphia, PA 19104 USA
[2] Delaware Res & Technol Ctr, Newark, DE 19702 USA
[3] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[4] Univ Penn Wharton Sch, Risk Management & Decis Proc Ctr, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
FAULT-DETECTION; SIMULATION; MODELS; SYSTEMS; DESIGN;
D O I
10.1002/aic.14330
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work addresses the problem of estimating complete probability density functions (PDFs) from historical process data that are incomplete (lack information on rare events), in the framework of Bayesian networks. In particular, this article presents a method of estimating the probabilities of events for which historical process data have no record. The rare-event prediction problem becomes more difficult and interesting, when an accurate first-principles model of the process is not available. To address this problem, a novel method of estimating complete multivariate PDFs is proposed. This method uses the maximum entropy and maximum likelihood principles. It is tested on mathematical and process examples, and the application and satisfactory performance of the method in risk assessment and fault detection are shown. Also, the proposed method is compared with a few copula methods and a nonparametric kernel method, in terms of performance, flexibility, interpretability, and rate of convergence. © 2014 American Institute of Chemical Engineers.
引用
收藏
页码:1013 / 1026
页数:14
相关论文
共 50 条
  • [41] Nonparametric maximum-likelihood estimation of probability measures: existence and consistency
    Sagara, N
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) : 249 - 271
  • [42] THE UNIMODAL MAXIMUM-ENTROPY DENSITY
    BROCKETT, PL
    [J]. ECONOMICS LETTERS, 1983, 12 (3-4) : 261 - 267
  • [43] MAXIMUM-LIKELIHOOD ESTIMATION OF THE MORTALITY-RATE FUNCTION
    DIMITROV, BN
    RACHEV, ST
    YAKOVLEV, AY
    [J]. BIOMETRICAL JOURNAL, 1985, 27 (03) : 317 - 326
  • [44] MAXIMUM-ENTROPY AND CONDITIONAL-PROBABILITY
    VANCAMPENHOUT, JM
    COVER, TM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1981, 27 (04) : 483 - 489
  • [45] ENTROPY INTERPRETATION OF MAXIMUM-LIKELIHOOD DECONVOLUTION
    GIANNAKIS, GB
    MENDEL, JM
    [J]. GEOPHYSICS, 1987, 52 (12) : 1621 - 1630
  • [46] Maximum-likelihood estimation for the discrete Boolean random function
    Handley, JC
    Dougherty, ER
    [J]. STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 : 32 - 39
  • [47] MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS OF GOMPERTZ SURVIVAL FUNCTION
    GARG, ML
    RAO, BR
    REDMOND, CK
    [J]. THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1970, 19 (02): : 152 - &
  • [48] ON THE MAXIMUM-ENTROPY ESTIMATE OF THE ELECTRON-DENSITY FUNCTION
    NAVAZA, J
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1985, 41 (MAY): : 232 - 244
  • [49] A new maximum entropy method for estimation of multimodal probability density function
    Li, G.
    Wang, Y. X.
    Zeng, Y.
    He, W. X.
    [J]. APPLIED MATHEMATICAL MODELLING, 2022, 102 : 137 - 152
  • [50] A new maximum entropy method for estimation of multimodal probability density function
    Li, G.
    Wang, Y.X.
    Zeng, Y.
    He, W.X.
    [J]. Applied Mathematical Modelling, 2022, 102 : 137 - 152