Maximal ergodic theorems and applications to Riemannian geometry

被引:2
|
作者
Mendonça, S [1 ]
Zhou, DT [1 ]
机构
[1] Univ Fed Fluminense, Math Inst, BR-24020140 Niteroi, RJ, Brazil
关键词
D O I
10.1007/BF02787554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new ergodic theorems in the context, of infinite ergodic theory, and give some applications to Riemannian and Kahler manifolds without conjugate points. One of the consequences of these ideas is that a complete manifold without conjugate points has nonpositive integral of the infimum of Ricci curvatures, whenever this integral makes sense. We also show that, a complete Kahler manifold with nonnegative holomorphic curvature is flat if it has no conjugate points.
引用
收藏
页码:319 / 335
页数:17
相关论文
共 50 条
  • [11] Maximal inequality and ergodic theorems for Markov groups
    A. I. Bufetov
    A. V. Klimenko
    [J]. Proceedings of the Steklov Institute of Mathematics, 2012, 277 : 27 - 42
  • [12] Noncommutative maximal ergodic theorems for positive contractions
    Bekjan, Turdebek N.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (09) : 2401 - 2418
  • [13] Maximal inequality and ergodic theorems for Markov groups
    Bufetov, A. I.
    Klimenko, A. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 277 (01) : 27 - 42
  • [14] NEW COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY
    Han, Yingbo
    Li, Ye
    Ren, Yibin
    Wei, Shihshu Walter
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (02): : 163 - 186
  • [15] SOME REGULARITY THEOREMS IN RIEMANNIAN GEOMETRY
    DETURCK, DM
    KAZDAN, JL
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1981, 14 (03): : 249 - 260
  • [16] REARRANGEMENT, MAXIMAL INEQUALITIES AND FRACTIONAL ERGODIC-THEOREMS
    BROISE, M
    DENIEL, Y
    DERRIENNIC, Y
    [J]. ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) : 689 - 714
  • [17] CONVERGENCE THEOREMS AND MAXIMAL INEQUALITIES FOR MARTINGALE ERGODIC PROCESSES
    罗光洲
    马璇
    刘培德
    [J]. Acta Mathematica Scientia, 2010, 30 (04) : 1269 - 1279
  • [18] CONVERGENCE THEOREMS AND MAXIMAL INEQUALITIES FOR MARTINGALE ERGODIC PROCESSES
    Luo Guangzhou
    Ma Xuan
    Liu Peide
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1269 - 1279
  • [19] DIVERGENCE THEOREMS IN SEMI-RIEMANNIAN GEOMETRY
    UNAL, B
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 40 (02) : 173 - 178
  • [20] Maximal and pointwise ergodic theorems for word-hyperbolic groups
    Fujiwara, K
    Nevo, A
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 843 - 858