q Multiobjective Optimization of Green Sand Mould System using DE and GSA

被引:0
|
作者
Ganesan, T. [1 ]
Vasant, P. [2 ]
Elamvazuthi, I. [2 ]
Shaari, Ku Zilati Ku [1 ]
机构
[1] Univ Teknol PETRONAS, Dept Chem Engn, Seri Iskandar, Malaysia
[2] Univ Teknol PETRONAS, Dept Fundamental & Appl Sci, Petronas, Malaysia
关键词
multi-objective (MO); industrial optimization; green sand mould system; weighted sum approach; differential evolution (DE); gravitational search algorithm (GSA); Hypervolume Indicator (HVI); approximate Pareto frontier;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most optimization cases in recent times present themselves in a multi-objective (MO) setting. Hence, it is vital for the decision maker (DM) to have in hand multiple solutions prior to selecting the best solution. In this work, the weighted sum scalarization approach is used in conjunction with two meta-heuristic algorithms; differential evolution (DE) and gravitational search algorithm (GSA). These methods are then used to generate the approximate Pareto frontier to the green sand mould system problem. Some comparative studies were then carried out with the algorithms in this work and that from the previous work. Examinations on the performance and the quality of the solutions obtained by these algorithms are shown here.
引用
收藏
页码:1012 / 1016
页数:5
相关论文
共 50 条
  • [31] Multiobjective optimization using variable complexity modelling for control system design
    Silva, Valceres V. R.
    Fleming, Peter J.
    Sugimoto, Jungiro
    Yokoyama, Ryuichi
    [J]. APPLIED SOFT COMPUTING, 2008, 8 (01) : 392 - 401
  • [32] Rehabilitation of a Water Distribution System Using Sequential Multiobjective Optimization Models
    Rahmani, Farshid
    Behzadian, Kourosh
    Ardeshir, Abdollah
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2016, 142 (05)
  • [33] A method of multiobjective optimization using a genetic algorithm and an artificial immune system
    Park, H.
    Kwak, N-S
    Lee, J.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2009, 223 (05) : 1243 - 1252
  • [34] Tuning of Power System Stabilizers using Multiobjective Optimization NSGA II
    Verdejo, H.
    Gonzalez, D.
    Delpiano, J.
    Becker, C.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (08) : 2653 - 2660
  • [35] Multiobjective optimization of reactor-regenerator system using ant algorithm
    Shelokar, PS
    Jayaraman, VK
    Kulkarni, BD
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2003, 21 (7-8) : 1167 - 1184
  • [36] Optimization of multiobjective system reliability design using FLC controlled GA
    Mukuda, Minoru
    Tsujimura, Yasuhiro
    Gen, Mitsuo
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 2007, 158 (03) : 72 - 80
  • [37] Optimization of multiobjective system reliability design using FLC controlled GA
    Mukuda, Minoru
    Tsujimura, Yasuhiro
    Gen, Mitsuo
    [J]. 1600, John Wiley and Sons Inc., P.O.Box 18667, Newark, NJ 07191-8667, United States (158):
  • [38] Optimization of green sand casting process parameters by using Taguchi's method
    Guharaja, S.
    Haq, A. Noorul
    Karuppannan, K. M.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 30 (11-12): : 1040 - 1048
  • [39] Optimization of green sand casting process parameters by using Taguchi’s method
    S. Guharaja
    A. Noorul Haq
    K. M. Karuppannan
    [J]. The International Journal of Advanced Manufacturing Technology, 2006, 30 : 1040 - 1048
  • [40] Optimization of the Gating System for Sand Casting Using Genetic Algorithm
    Nedeljko Dučić
    Žarko Ćojbašić
    Srećko Manasijević
    Radomir Radiša
    Radomir Slavković
    Ivan Milićević
    [J]. International Journal of Metalcasting, 2017, 11 : 255 - 265