q Multiobjective Optimization of Green Sand Mould System using DE and GSA

被引:0
|
作者
Ganesan, T. [1 ]
Vasant, P. [2 ]
Elamvazuthi, I. [2 ]
Shaari, Ku Zilati Ku [1 ]
机构
[1] Univ Teknol PETRONAS, Dept Chem Engn, Seri Iskandar, Malaysia
[2] Univ Teknol PETRONAS, Dept Fundamental & Appl Sci, Petronas, Malaysia
关键词
multi-objective (MO); industrial optimization; green sand mould system; weighted sum approach; differential evolution (DE); gravitational search algorithm (GSA); Hypervolume Indicator (HVI); approximate Pareto frontier;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most optimization cases in recent times present themselves in a multi-objective (MO) setting. Hence, it is vital for the decision maker (DM) to have in hand multiple solutions prior to selecting the best solution. In this work, the weighted sum scalarization approach is used in conjunction with two meta-heuristic algorithms; differential evolution (DE) and gravitational search algorithm (GSA). These methods are then used to generate the approximate Pareto frontier to the green sand mould system problem. Some comparative studies were then carried out with the algorithms in this work and that from the previous work. Examinations on the performance and the quality of the solutions obtained by these algorithms are shown here.
引用
收藏
页码:1012 / 1016
页数:5
相关论文
共 50 条
  • [1] Game-theoretic differential evolution for multiobjective optimization of green sand mould system
    T. Ganesan
    P. Vasant
    I. Elamvazuthi
    K. Z. K. Shaari
    [J]. Soft Computing, 2016, 20 : 3189 - 3200
  • [2] Game-theoretic differential evolution for multiobjective optimization of green sand mould system
    Ganesan, T.
    Vasant, P.
    Elamvazuthi, I.
    Shaari, K. Z. K.
    [J]. SOFT COMPUTING, 2016, 20 (08) : 3189 - 3200
  • [3] Optimization of green sand mould system using Taguchi based grey relational analysis
    Pulivarti, Srinivasa Rao
    Birru, Anil Kumar
    [J]. CHINA FOUNDRY, 2018, 15 (02) : 152 - 159
  • [4] Optimization of green sand mould system using Taguchi based grey relational analysis
    Srinivasa Rao Pulivarti
    Anil Kumar Birru
    [J]. China Foundry, 2018, 15 (02) : 152 - 159
  • [5] Multi-objective optimization of green sand mould system using evolutionary algorithms
    Surekha, B.
    Kaushik, Lalith K.
    Panduy, Abhishek K.
    Vundavilli, Pandu R.
    Parappagoudar, Mahesh B.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 58 (1-4): : 9 - 17
  • [6] Optimization of green sand mould system using Taguchi based grey relational analysis
    Srinivasa Rao Pulivarti
    Anil Kumar Birru
    [J]. China Foundry, 2018, 15 : 152 - 159
  • [7] Multi-objective optimization of green sand mould system using evolutionary algorithms
    B. Surekha
    Lalith K. Kaushik
    Abhishek K. Panduy
    Pandu R. Vundavilli
    Mahesh B. Parappagoudar
    [J]. The International Journal of Advanced Manufacturing Technology, 2012, 58 : 9 - 17
  • [8] Optimization of green sand mould system using Taguchi based grey relational analysis
    Srinivasa Rao Pulivarti
    Anil Kumar Birru
    [J]. China Foundry, 2018, (02) : 152 - 159
  • [9] Parametric Optimization of Permeability of Green Sand Mould Using ANN and ANFIS Methods
    Sahoo, Prafulla Kumar
    Pattnaik, Sarojrani
    Sutar, Mihir Kumar
    [J]. ADVANCES IN MATERIALS AND MANUFACTURING ENGINEERING, ICAMME 2019, 2020, : 495 - 501
  • [10] Forward and reverse mappings in green sand mould system using neural networks
    Parappagoudar, Mahesh B.
    Pratihar, D. K.
    Datta, G. L.
    [J]. APPLIED SOFT COMPUTING, 2008, 8 (01) : 239 - 260