Effects of Network Structure on Information Diffusion Reconstruction

被引:4
|
作者
Yu, Xuecheng [1 ]
Li, Rui [2 ]
Chu, Tianguang [1 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex network; influence diffusion; maximization likelihood; reconstruction; DYNAMICS; CONTAGION;
D O I
10.1109/ACCESS.2019.2913285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the effect of network structure on the reconstruction of information diffusion in a network. We employ the independent cascade model and a generalized independent cascade model to describe the network diffusing process with a single influence attempt and multiple influence attempts occurred between a pair of nodes, respectively. The diffusion reconstruction is formulated as a maximization likelihood problem. Based on this, we investigate the effect of the node number and the edge density of a network on the performance of diffusion reconstruction with numerical experiments on synthetic and real networks. The results show that reconstruction accuracies are inversely related to the node number and nonlinearly depends on the edge density. We also discuss the effect of the number of influence attempts in diffusion on the reconstruction accuracy.
引用
收藏
页码:54834 / 54842
页数:9
相关论文
共 50 条
  • [31] Environmental Complexity Influences Association Network Structure and Network-Based Diffusion of Foraging Information in Fish Shoals
    Webster, Mike M.
    Atton, Nicola
    Hoppitt, William J. E.
    Laland, Kevin N.
    AMERICAN NATURALIST, 2013, 181 (02): : 235 - 244
  • [32] MRI Reconstruction with Side Information using Diffusion Models
    Levac, Brett
    Jalal, Ajil
    Ramchandran, Kannan
    Tamir, Jonathan I.
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 1436 - 1442
  • [33] Understanding Information Diffusion via Heterogeneous Information Network Embeddings
    Su, Yuan
    Zhang, Xi
    Wang, Senzhang
    Fang, Binxing
    Zhang, Tianle
    Yu, Philip S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT I, 2019, 11446 : 501 - 516
  • [34] Network Reconstruction from a Single Information Cascade
    Chwistek, Katherine
    Butail, Sachit
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2550 - 2555
  • [35] Differential Information Diffusion Model in Social Network
    Tu, Hong T.
    Nguyen, Khu P.
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 96 - 106
  • [36] Modeling the reemergence of information diffusion in social network
    Yang, Dingda
    Liao, Xiangwen
    Shen, Huawei
    Cheng, Xueqi
    Chen, Guolong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 1493 - 1500
  • [37] Network features which affect information diffusion
    School of Engineering The University of Tokyo, Japan
    Trans. Jpn. Soc. Artif. Intell., 1 (195-203):
  • [38] Network modularity controls the speed of information diffusion
    Peng, Hao
    Nematzadeh, Azadeh
    Romero, Daniel M.
    Ferrara, Emilio
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [39] Quantification of information diffusion network characteristics in blogspace
    Kazama K.
    Imada M.
    Kashiwagi K.
    Transactions of the Japanese Society for Artificial Intelligence, 2010, 25 (03) : 404 - 409
  • [40] Information diffusion network inferring and pathway tracking
    ZHOU DongHao
    HAN WenBao
    WANG YongJun
    YUAN BaoDi
    ScienceChina(InformationSciences), 2015, 58 (09) : 135 - 149