Controllability of the Coulomb charging energy in close-packed nanoparticle arrays

被引:19
|
作者
Duan, Chao [1 ]
Wang, Ying [1 ]
Sun, Jinling [1 ]
Guan, Changrong [1 ]
Grunder, Sergio [2 ]
Mayor, Marcel [2 ,3 ]
Peng, Lianmao [1 ]
Liao, Jianhui [1 ]
机构
[1] Peking Univ, Dept Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
基金
中国国家自然科学基金;
关键词
ELECTRICAL-PROPERTIES; NANOCRYSTAL SUPERLATTICES; ASSEMBLIES; MONOLAYERS; TRANSPORT; GOLD; FILMS; NETWORKS; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1039/c3nr02334f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
引用
收藏
页码:10258 / 10266
页数:9
相关论文
共 50 条
  • [21] Close-Packed Two-Dimensional Silver Nanoparticle Arrays: Quadrupolar and Dipolar Surface Plasmon Resonance Coupling
    Yun, Sukang
    Hong, Soonchang
    Acapulco, Jesus A. I., Jr.
    Jang, Ho Young
    Ham, Songyi
    Lee, Kyungeun
    Kim, Seong Kyu
    Park, Sungho
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (16) : 6165 - 6172
  • [22] The relative surface energy of hexagonal close-packed crystals
    Matysina, ZA
    MATERIALS CHEMISTRY AND PHYSICS, 1999, 60 (01) : 70 - 78
  • [23] Relative surface energy of hexagonal close-packed crystals
    State University, Dnepropetrovsk 320000, Ukraine
    Mater Chem Phys, 1 (70-78):
  • [24] Energy transfer in close-packed PbS nanocrystal films
    Rinnerbauer, V.
    Egelhaaf, H. -J.
    Hingerl, K.
    Zimmer, P.
    Werner, S.
    Warming, T.
    Hoffmann, A.
    Kovalenko, M.
    Heiss, W.
    Hesser, G.
    Schaffler, F.
    PHYSICAL REVIEW B, 2008, 77 (08):
  • [25] Reducing Screening Effect in Close-Packed Si Field Emitter Arrays
    Ghotbi, Shabnam
    Mohammadi, Saeed
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (08) : 4387 - 4393
  • [26] Charged-particle detection efficiencies of close-packed CsI arrays
    Morfouace, P.
    Lynch, W. G.
    Tsang, M. B.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 848 : 45 - 53
  • [27] Collective excitations in charged nanocrystals and in close-packed arrays of charged nanocrystals
    Delerue, C
    Allan, G
    Niquet, YM
    PHYSICAL REVIEW B, 2005, 72 (19)
  • [28] Properties of individual and close-packed arrays of InP quantum dots.
    Micic, OI
    Jones, KM
    Nozik, AJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U339 - U339
  • [29] HOMOMETRISM IN CLOSE-PACKED STRUCTURES
    MARDIX, S
    ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 : 133 - 138
  • [30] Close-Packed Ices in Nanopores
    Mochizuki, Kenji
    Adachi, Yuji
    Koga, Kenichiro
    ACS NANO, 2023, 18 (01) : 347 - 354