Local-global principle for reduced norms over function fields of p-adic curves

被引:11
|
作者
Parimala, R. [1 ]
Preeti, R. [2 ]
Suresh, V. [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr NE, Atlanta, GA 30322 USA
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
基金
美国国家科学基金会;
关键词
HASSE PRINCIPLE; U-INVARIANT;
D O I
10.1112/S0010437X17007618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a (non-archimedean) local field and let F be the function field of a curve over K. Let D be a central simple algebra over F of period n and lambda is an element of F*. We show that if n is coprime to the characteristic of the residue field of K and D. (lambda) 0 in H-3 (F, mu(circle times)(n)2), then lambda is a reduced norm from D. This leads to a Hasse principle for the group SL1 (D), namely, an element lambda is an element of F* is a reduced norm from D if and only if it is a reduced norm locally at all discrete valuations of F.
引用
收藏
页码:410 / 458
页数:49
相关论文
共 50 条
  • [1] A local-global principle for similarities over function fields of p-adic curves
    Barlow, Jack
    JOURNAL OF ALGEBRA, 2025, 663 : 435 - 453
  • [2] Local-global principle for classical groups over function fields of p-adic curves
    Parimala, Raman
    Suresh, Venapally
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (02) : 255 - 304
  • [3] Patching and local-global principles for homogeneous spaces over function fields of p-adic curves
    Colliot-Thelene, Jean-Louis
    Parimala, Raman
    Suresh, Venapally
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 1011 - 1033
  • [4] LOCAL-GLOBAL QUESTIONS FOR TORI OVER p-ADIC FUNCTION FIELDS
    Harari, David
    Szamuely, Tamas
    JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (03) : 571 - 605
  • [5] A local-global theorem for p-adic supercongruences
    Pan, Hao
    Tauraso, Roberto
    Wang, Chen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 53 - 83
  • [6] Admissibility of groups over function fields of p-adic curves
    Reddy, B. Surendranath
    Suresh, V.
    ADVANCES IN MATHEMATICS, 2013, 237 : 316 - 330
  • [7] ISOTROPY OF QUADRATIC FORMS OVER FUNCTION FIELDS OF p-ADIC CURVES
    Parimala, R.
    Suresh, V.
    PUBLICATIONS MATHEMATIQUES, 1998, (88): : 129 - 150
  • [8] Indices of hyperelliptic curves over p-adic fields
    J. Van Geel
    V. I. Yanchevskii
    manuscripta mathematica, 1998, 96 : 317 - 333
  • [9] Indices of hyperelliptic curves over p-adic fields
    Van Geel, J
    Yanchevskii, VI
    MANUSCRIPTA MATHEMATICA, 1998, 96 (03) : 317 - 333
  • [10] A LOCAL-GLOBAL PRINCIPLE FOR ALGEBRAS OVER THE RATIONAL-FUNCTION FIELDS
    VORONOVICH, II
    DOKLADY AKADEMII NAUK BELARUSI, 1987, 31 (10): : 877 - 880