Abrupt motion tracking using a visual saliency embedded particle filter

被引:58
|
作者
Su, Yingya [1 ]
Zhao, Qingjie [1 ]
Zhao, Liujun [1 ]
Gu, Dongbing [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
基金
中国国家自然科学基金;
关键词
Object tracking; Abrupt motion; Particle filter; Visual saliency; Covariance descriptor; ATTENTION;
D O I
10.1016/j.patcog.2013.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Abrupt motion is a significant challenge that commonly causes traditional tracking methods to fail. This paper presents an improved visual saliency model and integrates it to a particle filter tracker to solve this problem. Once the target is lost, our algorithm recovers tracking by detecting the target region from salient regions, which are obtained in the saliency map of current frame. In addition, to strengthen the saliency of target region, the target model is used as a prior knowledge to calculate a weight set which is utilized to construct our improved saliency map adaptively. Furthermore, we adopt the covariance descriptor as the appearance model to describe the object more accurately. Compared with several other tracking algorithms, the experimental results demonstrate that our method is more robust in dealing with various types of abrupt motion scenarios. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1826 / 1834
页数:9
相关论文
共 50 条
  • [21] Tracking human hand motion using genetic particle filter
    Ye, Zhu
    Liu, Zhi-Qiang
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 4942 - +
  • [22] Feature-driven motion model-based particle-filter tracking method with abrupt motion handling
    Liu, Yu
    Lai, Shiming
    Wang, Bin
    Zhang, Maojun
    Wang, Wei
    OPTICAL ENGINEERING, 2012, 51 (04)
  • [23] Kernel Particle Filter for visual tracking
    Chang, C
    Ansari, R
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (03) : 242 - 245
  • [24] An Ant Particle Filter for Visual Tracking
    Wang, Fasheng
    Lin, Baowei
    Li, Xucheng
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 417 - 422
  • [25] Oriented Particle Filter for Visual Tracking
    Hao Zhihui
    Wang Bo
    Zheng Zhihui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2915 - 2919
  • [26] Correlation Particle Filter for Visual Tracking
    Zhang, Tianzhu
    Liu, Si
    Xu, Changsheng
    Liu, Bin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2676 - 2687
  • [27] Iterative particle filter for visual tracking
    Fan, Zhenhua
    Ji, Hongbing
    Zhang, Yongquan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 36 : 140 - 153
  • [28] An improved real visual tracking system using particle filter
    Fiyad, Hatem Mohammed Naguib
    Abdellatif, Ahmed Gamal
    Mahamoud, Adel Zaghloul
    Ahmed, Mostafa Mohamed
    Nasr, Mohamed E.
    Abdelsamie, Fathi Elsayed
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (11): : 164 - 169
  • [29] Object Tracking Using Particle Filter with Back Projection-Based Sampling on Saliency
    Pirayawaraporn, Alongkorn
    Chindakham, Nachaya
    Jeong, Mun-Ho
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 1696 - 1698
  • [30] Visual tracking via dynamic saliency discriminative correlation filter
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    Li, Junbao
    APPLIED INTELLIGENCE, 2022, 52 (06) : 5897 - 5911