quantum measurement;
mean field magnet;
phase transition;
dynamics;
Schrodinger cat states;
Born rule;
Suzuki scaling;
Burridan's ass;
D O I:
暂无
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
In a quantum measurement, a coupling g between the system S and the apparatus A triggers the establishment of correlations, which provide statistical information about S. Robust registration requires A to be macroscopic, and a dynamical symmetry breaking of A governed by S allows the absence of any bias. Phase transitions are thus a paradigm for quantum measurement apparatuses, with the order parameter as pointer variable. The coupling g behaves as the source of symmetry breaking. The exact solution of a model where S is a single spin and A a magnetic dot (consisting of N interacting spins and a phonon thermal bath) exhibits the reduction of the state as a relaxation process of the off-diagonal elements of S + A, rapid due to the large size of N. The registration of the diagonal elements involves a slower relaxation from the initial paramagnetic state of A to either one of its ferromagnetic states. If g is too weak, the measurement fails due to a "Buridan's ass" effect. The probability distribution for the magnetization then develops not one but two narrow peaks at the ferromagnetic values. During its evolution it goes through wide shapes extending between these values.