Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production

被引:101
|
作者
Shen, Hui [1 ,6 ]
Poovaiah, Charleson R. [2 ,6 ]
Ziebell, Angela [3 ,6 ]
Tschaplinski, Timothy J. [6 ]
Pattathil, Sivakumar [4 ,6 ]
Gjersing, Erica [3 ,6 ]
Engle, Nancy L. [6 ]
Katahira, Rui [3 ]
Pu, Yunqiao [3 ,6 ]
Sykes, Robert [3 ,6 ]
Chen, Fang [1 ,6 ]
Ragauskas, Arthur J. [5 ,6 ]
Mielenz, Jonathan R. [6 ]
Hahn, Michael G. [4 ,6 ]
Davis, Mark [3 ,6 ]
Stewart, C. Neal, Jr. [2 ,6 ]
Dixon, Richard A. [1 ,6 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
[2] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
[4] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
[5] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[6] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA
关键词
Switchgrass; Bioenergy; Biofuel; Feedstock; Cellulosic ethanol; PvMYB4; Transcription factor; Cell wall; Recalcitrance; Lignin; Hemicellulose; Pectin; MONOCLONAL-ANTIBODY; DOWN-REGULATION; CELL-WALLS; LIGNIN; XYLOGLUCAN; ETHANOL; ACID; POLYSACCHARIDES; RECALCITRANCE; LIGNIFICATION;
D O I
10.1186/1754-6834-6-71
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, "absent technological breakthroughs", it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. Results: We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance. Conclusions: Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers
    Missaoui, AM
    Paterson, AH
    Bouton, JH
    [J]. THEORETICAL AND APPLIED GENETICS, 2005, 110 (08) : 1372 - 1383
  • [42] An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.)
    Jason N. Burris
    David G. J. Mann
    Blake L. Joyce
    C. Neal Stewart
    [J]. BioEnergy Research, 2009, 2 : 267 - 274
  • [43] Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations
    Madhugiri Nageswara-Rao
    C. Neal Stewart
    Charles Kwit
    [J]. Genetic Resources and Crop Evolution, 2013, 60 : 1057 - 1068
  • [44] Carbohydrate and lignin partitioning in switchgrass (Panicum virgatum L.) biomass as a bioenergy feedstock
    Butkute, Bronislava
    Lemeziene, Nijole
    Ceseviciene, Jurgita
    Liatukas, Zilvinas
    Dabkeviciene, Giedre
    [J]. ZEMDIRBYSTE-AGRICULTURE, 2013, 100 (03) : 251 - 260
  • [45] Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations
    Nageswara-Rao, Madhugiri
    Stewart, C. Neal, Jr.
    Kwit, Charles
    [J]. GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (03) : 1057 - 1068
  • [46] Estimation of Genetic Parameters for Biomass Yield in Lowland Switchgrass (Panicum virgatum L.)
    Bhandari, H. S.
    Saha, M. C.
    Fasoula, V. A.
    Bouton, J. H.
    [J]. CROP SCIENCE, 2011, 51 (04) : 1525 - 1533
  • [47] Hunt for sources of rust resistance in the bioenergy crop, switchgrass (Panicum virgatum L.)
    Uppalapati, S. R.
    Ishiga, Y.
    Serba, D.
    Szabo, L. J.
    Saha, M. C.
    Mysore, K. S.
    [J]. PHYTOPATHOLOGY, 2012, 102 (07) : 157 - 157
  • [48] Effect of preplant seed conditioning treatment on the germination of switchgrass (Panicum virgatum L.)
    Madakadze, IC
    Prithiviraj, B
    Madakadze, RM
    Stewart, K
    Peterson, P
    Coulman, BE
    Smith, DL
    [J]. SEED SCIENCE AND TECHNOLOGY, 2000, 28 (02) : 403 - 411
  • [49] Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China
    Ma, Yongqing
    An, Yu
    Shui, Junfeng
    Sun, Zhaojun
    [J]. PLANT SCIENCE, 2011, 181 (06) : 638 - 643
  • [50] An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.)
    Burris, Jason N.
    Mann, David G. J.
    Joyce, Blake L.
    Stewart, C. Neal, Jr.
    [J]. BIOENERGY RESEARCH, 2009, 2 (04) : 267 - 274