Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

被引:181
|
作者
Zuend, A. [1 ]
Seinfeld, J. H. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
VAPOR-PRESSURE ESTIMATION; VOLATILITY BASIS-SET; ALPHA-PINENE; ACTIVITY-COEFFICIENTS; PARTICULATE MATTER; MASS-SPECTROMETRY; AMMONIUM-SULFATE; TROPOSPHERIC DEGRADATION; THERMODYNAMIC MODEL; INORGANIC AEROSOLS;
D O I
10.5194/acp-12-3857-2012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of alpha-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than similar to 0.6, as in the case of alpha-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the alpha-pinene system are also discussed from a more general point of view.
引用
收藏
页码:3857 / 3882
页数:26
相关论文
共 50 条
  • [41] Gas-Particle Partitioning of Vehicle Emitted Primary Organic Aerosol Measured in a Traffic Tunnel
    Li, Xiang
    Dallmann, Timothy R.
    May, Andrew A.
    Tkacik, Daniel S.
    Lambe, Andrew T.
    Jayne, John T.
    Croteau, Philip L.
    Presto, Albert A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (22) : 12146 - 12155
  • [42] Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid-liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides
    Drozd, G. T.
    Woo, J. L.
    McNeill, V. F.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (16) : 8255 - 8263
  • [43] Time Scales for Gas-Particle Partitioning Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis
    Saleh, Rawad
    Donahue, Neil M.
    Robinson, Allen L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) : 5588 - 5594
  • [44] Measurements of acid and organic partitioning in liquid-liquid phase-separated systems
    Deming, Benjamin
    Ziemann, Paul
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [45] PHASE SEPARATION OF LIQUID-LIQUID DISPERSIONS
    PRILUTSK.GY
    VOLKOV, LV
    [J]. ZHURNAL PRIKLADNOI KHIMII, 1970, 43 (12) : 2669 - &
  • [46] Liquid-Liquid Phase Separation in Chromatin
    Rippe, Karsten
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2022, 14 (02):
  • [47] RNA and liquid-liquid phase separation
    Guo, Qi
    Shi, Xiangmin
    Wang, Xiangting
    [J]. NON-CODING RNA RESEARCH, 2021, 6 (02): : 92 - 99
  • [48] Particle dynamics and separation at liquid-liquid interfaces
    Sinha, Ashok
    Mollah, Amlan K.
    Hardt, Steffen
    Ganguly, Ranjan
    [J]. SOFT MATTER, 2013, 9 (22) : 5438 - 5447
  • [49] Liquid-Liquid phase separation in bacteria
    Guo, Dong
    Xiong, Yan
    Fu, Beibei
    Sha, Zhou
    Li, Bohao
    Wu, Haibo
    [J]. MICROBIOLOGICAL RESEARCH, 2024, 281
  • [50] Liquid-Liquid Phase Separation in Biology
    Hyman, Anthony A.
    Weber, Christoph A.
    Juelicher, Frank
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 30, 2014, 30 : 39 - 58