Chemically intuited, large-scale screening of MOFs by machine learning techniques

被引:132
|
作者
Borboudakis, Giorgos [1 ,2 ]
Stergiannakos, Taxiarchis [3 ]
Frysali, Maria [3 ]
Klontzas, Emmanuel [3 ]
Tsamardinos, Ioannis [1 ,2 ,4 ]
Froudakis, George E. [3 ]
机构
[1] Univ Crete, Dept Comp Sci, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[2] Gnosis Data Anal PC, Palaiokapa 65, GR-71305 Iraklion, Greece
[3] Univ Crete, Dept Chem, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[4] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
关键词
METAL-ORGANIC FRAMEWORKS; PREDICTION; CHEMISTRY; DESIGN;
D O I
10.1038/s41524-017-0045-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Compressed Linear Algebra for Large-Scale Machine Learning
    Elgohary, Ahmed
    Boehm, Matthias
    Haas, Peter J.
    Reiss, Frederick R.
    Reinwald, Berthold
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 9 (12): : 960 - 971
  • [22] Large-Scale Machine Learning for Business Sector Prediction
    Angenent, Mitch N.
    Barata, Antonio Pereira
    Takes, Frank W.
    [J]. PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1143 - 1146
  • [23] Angel: a new large-scale machine learning system
    Jiang, Jie
    Yu, Lele
    Jiang, Jiawei
    Liu, Yuhong
    Cui, Bin
    [J]. NATIONAL SCIENCE REVIEW, 2018, 5 (02) : 216 - 236
  • [24] Quick extreme learning machine for large-scale classification
    Audi Albtoush
    Manuel Fernández-Delgado
    Eva Cernadas
    Senén Barro
    [J]. Neural Computing and Applications, 2022, 34 : 5923 - 5938
  • [25] Large-scale machine learning for metagenomics sequence classification
    Vervier, Kevin
    Mahe, Pierre
    Tournoud, Maud
    Veyrieras, Jean-Baptiste
    Vert, Jean-Philippe
    [J]. BIOINFORMATICS, 2016, 32 (07) : 1023 - 1032
  • [26] Introduction to Special Issue on Large-Scale Machine Learning
    Hsu, Chun-Nan
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [27] A review of Nystrom methods for large-scale machine learning
    Sun, Shiliang
    Zhao, Jing
    Zhu, Jiang
    [J]. INFORMATION FUSION, 2015, 26 : 36 - 48
  • [28] Compressed linear algebra for large-scale machine learning
    Ahmed Elgohary
    Matthias Boehm
    Peter J. Haas
    Frederick R. Reiss
    Berthold Reinwald
    [J]. The VLDB Journal, 2018, 27 : 719 - 744
  • [29] Machine learning for large-scale crop yield forecasting
    Paudel, Dilli
    Boogaard, Hendrik
    de Wit, Allard
    Janssen, Sander
    Osinga, Sjoukje
    Pylianidis, Christos
    Athanasiadis, Ioannis N.
    [J]. AGRICULTURAL SYSTEMS, 2021, 187
  • [30] Dynamic Control Flow in Large-Scale Machine Learning
    Yu, Yuan
    Abadi, Martin
    Barham, Paul
    Brevdo, Eugene
    Burrows, Mike
    Davis, Andy
    Dean, Jeff
    Ghemawat, Sanjay
    Harley, Tim
    Hawkins, Peter
    Isard, Michael
    Kudlur, Manjunath
    Monga, Rajat
    Murray, Derek
    Zheng, Xiaoqiang
    [J]. EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,