Chemically intuited, large-scale screening of MOFs by machine learning techniques

被引:132
|
作者
Borboudakis, Giorgos [1 ,2 ]
Stergiannakos, Taxiarchis [3 ]
Frysali, Maria [3 ]
Klontzas, Emmanuel [3 ]
Tsamardinos, Ioannis [1 ,2 ,4 ]
Froudakis, George E. [3 ]
机构
[1] Univ Crete, Dept Comp Sci, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[2] Gnosis Data Anal PC, Palaiokapa 65, GR-71305 Iraklion, Greece
[3] Univ Crete, Dept Chem, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[4] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
关键词
METAL-ORGANIC FRAMEWORKS; PREDICTION; CHEMISTRY; DESIGN;
D O I
10.1038/s41524-017-0045-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Chemically intuited, large-scale screening of MOFs by machine learning techniques
    Giorgos Borboudakis
    Taxiarchis Stergiannakos
    Maria Frysali
    Emmanuel Klontzas
    Ioannis Tsamardinos
    George E. Froudakis
    [J]. npj Computational Materials, 3
  • [2] Author Correction: Chemically intuited, large-scale screening of MOFs by machine learning techniques
    Giorgos Borboudakis
    Taxiarchis Stergiannakos
    Maria Frysali
    Emmanuel Klontzas
    Ioannis Tsamardinos
    George E. Froudakis
    [J]. npj Computational Materials, 3
  • [3] Chemically intuited, large-scale screening of MOFs by machine learning techniques (vol 3, 2017)
    Borboudakis, Giorgos
    Stergiannakos, Taxiarchis
    Frysali, Maria
    Klontzas, Emmanuel
    Tsamardinos, Ioannis
    Froudakis, George E.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2017, 3
  • [4] Machine learning for large-scale MOF screening
    Coupry, Damien
    Groot, Laurens
    Addicoat, Matthew
    Heine, Thomas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [5] A Universal Machine Learning Algorithm for Large-Scale Screening of Materials
    Fanourgakis, George S.
    Gkagkas, Konstantinos
    Tylianakis, Emmanuel
    Froudakis, George E.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) : 3814 - 3822
  • [6] Move to the large-scale screening machine
    Der Weg zur Grosssiebmaschine
    [J]. Guettinger, M., 1600, (30):
  • [7] Precipitation forecasting by large-scale climate indices and machine learning techniques
    Rostam, Mehdi Gholami
    Sadatinejad, Seyyed Javad
    Malekian, Arash
    [J]. JOURNAL OF ARID LAND, 2020, 12 (05) : 854 - 864
  • [8] Precipitation forecasting by large-scale climate indices and machine learning techniques
    Mehdi Gholami Rostam
    Seyyed Javad Sadatinejad
    Arash Malekian
    [J]. Journal of Arid Land, 2020, 12 : 854 - 864
  • [9] Precipitation forecasting by large-scale climate indices and machine learning techniques
    Mehdi GHOLAMI ROSTAM
    Seyyed Javad SADATINEJAD
    Arash MALEKIAN
    [J]. Journal of Arid Land, 2020, 12 (05) : 854 - 864
  • [10] A Survey on Large-Scale Machine Learning
    Wang, Meng
    Fu, Weijie
    He, Xiangnan
    Hao, Shijie
    Wu, Xindong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (06) : 2574 - 2594