Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems

被引:17
|
作者
Chhetri, M. [1 ]
Drabek, P. [2 ]
Shivaji, R. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Univ W Bohemia, KMA FAV, Plzen 30614, Czech Republic
关键词
p-Laplacian; systems; semipositone; superlinear; positive solutions;
D O I
10.1017/S0308210515000220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasilinear elliptic problem of the form -Delta pu = lambda f(u) in Omega, u = 0 on partial derivative Omega, where lambda > 0 is a parameter, 1 < p < 2 and Omega is a strictly convex bounded domain in R-N, N > p, with C-2 boundary partial derivative Omega. The nonlinearity f: [0, infinity) -> R is a continuous function that is semipositone (f(0) < 0) and p-superlinear at infinity. Using degree theory, combined with a rescaling argument and uniform L-infinity a priori bound, we establish the existence of a positive solution for lambda small. Moreover, we show that there exists a connected component of positive solutions bifurcating from infinity at lambda = 0. We also extend our study to systems.
引用
收藏
页码:925 / 936
页数:12
相关论文
共 50 条
  • [21] Positive solutions for a semipositone anisotropic p-Laplacian problem
    Razani, A.
    Figueiredo, Giovany M.
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [22] Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP
    Rao, Sabbavarapu Nageswara
    Singh, Manoj
    Msmali, Ahmed Hussein
    Ahmadini, Abdullah Ali H.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [23] NON-EXISTENCE OF POSITIVE RADIAL SOLUTION FOR SEMIPOSITONE WEIGHTED P-LAPLACIAN PROBLEMS
    Herron, Sigifredo
    Lopera, Emer
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [24] An existence result on positive solutions for a class of p-Laplacian systems
    Hai, DD
    Shivaji, R
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) : 1007 - 1010
  • [25] Existence of Positive Solutions for a Class of Boundary Value Problems with p-Laplacian in Banach Spaces
    Georgiev, S.
    Mebarki, K.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (04): : 197 - 200
  • [26] Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball
    Dhanya, R.
    Morris, Q.
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1533 - 1548
  • [27] MULTIPLE SOLUTIONS FOR SUPERLINEAR p-LAPLACIAN NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (03) : 699 - 740
  • [28] Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 510 - 525
  • [29] On the existence of positive solutions for a class of infinite semipositone problems
    Rasouli, S.H.
    Ghaemi, M.B.
    Afrouzi, G.A.
    Choubin, M.
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (04): : 27 - 34
  • [30] ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS
    Rasouli, S. H.
    Ghaemi, M. B.
    Afrouzi, G. A.
    Choubin, M.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 27 - 34