Generalized Confidence Interval for the Scale Parameter of the Power-Law Process

被引:10
|
作者
Wang, Bing Xing [1 ]
Xie, Min [2 ]
Zhou, Jun Xing [3 ]
机构
[1] Zhejiang Gongshang Univ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
[2] Natl Univ Singapore, Dept Ind & Syst Engn, Singapore 117548, Singapore
[3] Zhejiang Univ Finance & Econ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
关键词
Generalized confidence interval; Non homogeneous Poisson process; Power-law process; Repairable system; Scale parameter; 62N02; 62N05; RELIABILITY GROWTH-MODELS; OF-FIT TEST; REPAIRABLE SYSTEMS; WEIBULL PROCESS; STATISTICAL-ANALYSIS; DUANE PLOT; INFERENCE;
D O I
10.1080/03610926.2011.588363
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The power-law process is widely used in the analysis of repairable system reliability. In this article, interval estimation for the scale parameter is investigated under some general conditions. A procedure to derive a generalized confidence interval for the scale parameter is presented. We also study the accuracy of the generalized confidence interval by Monte Carlo simulation. Finally, two examples are shown to illustrate the proposed procedure.
引用
收藏
页码:898 / 906
页数:9
相关论文
共 50 条
  • [11] Generalized fluctuation relation for power-law distributions
    Budini, Adrian A.
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):
  • [12] The generalized power-law: A new viscosity model
    Rodrigue, Dennis
    [J]. XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 1441 - 1443
  • [13] Parameter identifiability of power-law biochemical system models
    Srinath, Sridharan
    Gunawan, Rudiyanto
    [J]. JOURNAL OF BIOTECHNOLOGY, 2010, 149 (03) : 132 - 140
  • [14] An estimation for the power-law distribution parameter based on entropy
    Fu, BB
    Gao, ZY
    [J]. CHINESE PHYSICS LETTERS, 2006, 23 (02) : 520 - 522
  • [15] Estimation of the Shear Stress Parameter of a Power-Law Fluid
    Al-Ashhab, Samer S.
    Alqahtani, Rubayyi T.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [16] POWER-LAW SCATTERING IN FLUIDS WITH A NONSCALAR ORDER PARAMETER
    WONG, APY
    WILTZIUS, P
    LARSON, RG
    YURKE, B
    [J]. PHYSICAL REVIEW E, 1993, 47 (04): : 2683 - 2688
  • [17] STATISTICAL PROPERTIES OF A GENERALIZED CLASS OF POWER-LAW DISTRIBUTIONS
    GRIGOREV, VA
    FADEEV, AG
    BERKOVITS, LA
    [J]. INDUSTRIAL LABORATORY, 1988, 54 (05): : 576 - 579
  • [18] Parametric Bootstrap Confidence Interval Method for the Power Law Process With Applications to Multiple Repairable Systems
    Wang, Yanping
    Lu, Zhenzhou
    Xiao, Sinan
    [J]. IEEE ACCESS, 2018, 6 : 49157 - 49169
  • [19] Similarity solutions to the power-law generalized Newtonian fluid
    Gao, Wenjie
    Wang, Junyu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 381 - 391
  • [20] Power-law entropies for continuous systems and generalized operations
    Creaco, Anthony J.
    Kalogeropoulos, Nikolaos
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (28):