Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions

被引:56
|
作者
Antontsev, Stanislav [1 ]
机构
[1] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 12期
关键词
Waves; Nonlinear wave equation; Energy estimates; Variable nonlinearity; Nonstandard growth conditions; Blow-up; EXISTENCE;
D O I
10.1016/j.crme.2011.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the Dirichlet problem for equation U-tt = div(a(x, t)vertical bar del u vertical bar(p(x, t)-2)del u) + alpha Delta u(t) + b(x, t)vertical bar u vertical bar(sigma(x, t)-2)u in which alpha is a nonnegative constant, the coefficients a(x, t), b(x, t) and the exponents of nonlinearity p(x, t), sigma(x, t) are given functions. Under suitable conditions on the data, we study the finite time blow-up of the solutions. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:751 / 755
页数:5
相关论文
共 50 条