Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions

被引:56
|
作者
Antontsev, Stanislav [1 ]
机构
[1] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 12期
关键词
Waves; Nonlinear wave equation; Energy estimates; Variable nonlinearity; Nonstandard growth conditions; Blow-up; EXISTENCE;
D O I
10.1016/j.crme.2011.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the Dirichlet problem for equation U-tt = div(a(x, t)vertical bar del u vertical bar(p(x, t)-2)del u) + alpha Delta u(t) + b(x, t)vertical bar u vertical bar(sigma(x, t)-2)u in which alpha is a nonnegative constant, the coefficients a(x, t), b(x, t) and the exponents of nonlinearity p(x, t), sigma(x, t) are given functions. Under suitable conditions on the data, we study the finite time blow-up of the solutions. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:751 / 755
页数:5
相关论文
共 50 条
  • [1] WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP
    Antontsev, Stanislav
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04): : 503 - 525
  • [2] Young measure solutions for the wave equation with p(x, t)-Laplacian: Existence and blow-up
    Amorim, Paulo
    Antontsev, Stanislav
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 153 - 167
  • [3] BLOW-UP RATE OF SOLUTIONS FOR P-LAPLACIAN EQUATION
    Zhao Junning
    Liang Zhilei
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 21 (02): : 134 - 140
  • [4] BLOW-UP OF SOLUTIONS TO A VISCOELASTIC WAVE EQUATION WITH NONLOCAL DAMPING
    Li, Donghao
    Zhang, Hongwei
    Liu, Shuo
    Hu, Qingiyng
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 2017 - 2031
  • [5] Blow-up of solutions for wave equation with multiple ?(x)-laplacian and variable-exponent nonlinearities
    Khaldi, Aya
    Ouaoua, Amar
    Maouni, Messaoud
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (03) : 1039 - 1050
  • [6] Kelvin-Voight equation with p-Laplacian and damping term: Existence, uniqueness and blow-up
    Antontsev, S. N.
    Khompysh, Kh.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1255 - 1273
  • [7] Global existence and blow-up of solutions for a parabolic equation involving the fractional p(x)-Laplacian
    Boudjeriou, Tahir
    [J]. APPLICABLE ANALYSIS, 2022, 101 (08) : 2903 - 2921
  • [8] Blow-up solutions to the semilinear wave equation with overdamping term
    Liu, Miaomiao
    Guo, Bin
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 667 - 672
  • [9] Blow-up solutions to a (p, q)-Laplacian system with gradient term
    Hamydy, A.
    Massar, M.
    Tsouli, N.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (04) : 745 - 751
  • [10] Blow-Up of Solutions for Wave Equation Involving the Fractional Laplacian with Nonlinear Source
    Bidi, Y.
    Beniani, A.
    Alnegga, M. Y.
    Moumen, A.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021