Spectroscopic evidence for the origin of the dumbbell cyclic voltammogram of single-walled carbon nanotubes

被引:12
|
作者
Al-zubaidi, Ayar [1 ]
Ishii, Yosuke [1 ]
Yamada, Saki [1 ]
Matsushita, Tomohiro [1 ]
Kawasaki, Shinji [1 ]
机构
[1] Nagoya Inst Technol, Dept Mat Sci & Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
IN-SITU RAMAN; DOUBLE-LAYER CAPACITORS; CHARGE-TRANSFER; INTERCALATION; CHROMATOGRAPHY; ELECTRODES; GRAPHITE; SURFACE; STATES; MODE;
D O I
10.1039/c3cp53898b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated the changes in charge carrier density responsible for the dumbbell-like cyclic voltammogram of single-walled carbon nanotubes (SWCNTs) used as electric double layer capacitor electrodes. We utilized in situ Raman spectroscopy of SWCNTs in the potential range where the dumbbell voltammogram is observed and electric double layer charging would be the dominant mechanism. The study revealed that, unexpectedly, the spectroscopic changes coinciding with the dumbbell steps on the voltammogram occur more sharply in metallic tubes, as seen from (1) the sudden enhancement in the intensity of the BWF Breit-Wigner-Fano (BWF) feature, (2) a considerably more significant frequency upshift of G(+) and G' bands, and (3) a drop in radial breathing mode intensity, compared to those in the spectra of semiconducting tubes. In addition, the spectroscopic changes observed with open-end SWCNT samples were more defined and correlated more accurately with the electronic structure of the tubes compared to those observed with closed-end SWCNTs.
引用
收藏
页码:20672 / 20678
页数:7
相关论文
共 50 条
  • [31] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005
    不详
    [J]. J. Am. Chem. Soc., 2009, 11 (X3934-3941):
  • [32] Cutting single-walled carbon nanotubes
    Ziegler, KJ
    Gu, ZN
    Shaver, J
    Chen, ZY
    Flor, EL
    Schmidt, DJ
    Chan, C
    Hauge, RH
    Smalley, RE
    [J]. NANOTECHNOLOGY, 2005, 16 (07) : S539 - S544
  • [33] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    [J]. NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192
  • [34] Formylation of single-walled carbon nanotubes
    Bayazit, Mustafa K.
    Suri, Anil
    Coleman, Karl S.
    [J]. CARBON, 2010, 48 (12) : 3412 - 3419
  • [35] Localization in single-walled carbon nanotubes
    Fuhrer, MS
    Cohen, ML
    Zettl, A
    Crespi, V
    [J]. SOLID STATE COMMUNICATIONS, 1999, 109 (02) : 105 - 109
  • [36] Silylation of single-walled carbon nanotubes
    Hemraj-Benny, Tirandai
    Wong, Stanislaus S.
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4827 - 4839
  • [37] Purification of single-walled carbon nanotubes
    Pillai, Sreejarani K.
    Ray, Suprakas Sinha
    Moodley, Mathew
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3011 - 3047
  • [38] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [39] Iodination of single-walled carbon nanotubes
    Coleman, Karl S.
    Chakraborty, Amit K.
    Bailey, Sam R.
    Sloan, Jeremy
    Alexander, Morgan
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (05) : 1076 - 1081
  • [40] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (14)