Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids

被引:35
|
作者
Mirmohammadi, Seyed Aliakbar [1 ]
Behi, Mohammadreza [2 ]
Gan, Yixiang [1 ]
Shen, Luming [1 ]
机构
[1] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Chem & Biol Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
IRREVERSIBLE-PROCESSES; DYNAMICS; SILVER; NANOPARTICLES; PERFORMANCE; LIQUID; SIZE; NONEQUILIBRIUM; AUGMENTATION; MECHANICS;
D O I
10.1103/PhysRevE.99.043109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, using the Green-Kubo-method-based molecular dynamics simulations, correlations for predicting the thermophysical properties of nanofluids are developed based on particle shape, fluid temperature, and volume concentration. Silver nanofluids with various nanoparticle shapes including spheres, cubes, cylinders, and rectangular prisms are investigated. The numerical study is conducted within the concentration range 0.14-1.4 vol % and temperature range 280-335 K. The relative thermal conductivity and relative viscosity predicated by the proposed correlations are within a mean deviation of 2% and 5%, respectively, as compared with the experimental results from this study and the available literature. The proposed correlation will be a useful tool for engineers in designing the nanofluids for different applications in industry.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Measurement of temperature-dependent thermal conductivity, viscosity and density of ZnO-Theminol 55 Nanofluids
    Anish, M.
    Jayaprabakar, J.
    Joy, Nivin
    Prabhu, A.
    Reddy, B. Krishna Kanth
    Rajulu, E. Govinda
    [J]. MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 148 - 151
  • [22] Viscosity of nanofluids: particle shape and fractal aggregates
    Gaganpreet
    Srivastava, Sunita
    [J]. PHYSICS AND CHEMISTRY OF LIQUIDS, 2015, 53 (02) : 174 - 186
  • [23] The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls
    Herterich, James G.
    Griffiths, Ian M.
    Vella, Dominic
    Field, Robert W.
    [J]. AICHE JOURNAL, 2014, 60 (05) : 1891 - 1904
  • [24] The combined influences of variable thermal conductivity, temperature- and pressure-dependent viscosity and core-mantle coupling on thermal evolution
    van den Berg, AP
    Rainey, ESG
    Yuen, DA
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2005, 149 (3-4) : 259 - 278
  • [25] An explicit model of temperature-dependent thermal conductivity for nanofluids
    Tiandho, Y.
    Afriani, F.
    Puriza, M.Y.
    [J]. IOP Conference Series: Earth and Environmental Science, 2019, 353 (01):
  • [26] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Sunita Gaganpreet
    [J]. Applied Nanoscience, 2012, 2 : 325 - 331
  • [27] Recent developments on viscosity and thermal conductivity of nanofluids
    Yang, Liu
    Xu, Jianyong
    Du, Kai
    Zhang, Xiaosong
    [J]. POWDER TECHNOLOGY, 2017, 317 : 348 - 369
  • [28] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Gaganpreet
    Srivastava, Sunita
    [J]. APPLIED NANOSCIENCE, 2012, 2 (03) : 325 - 331
  • [29] Influence of pH on Nanofluids' Viscosity and Thermal Conductivity
    Wang Xian-Ju
    Li Xin-Fang
    [J]. CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [30] Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids
    Omrani, A. N.
    Esmaeilzadeh, E.
    Jafari, M.
    Behzadmehr, A.
    [J]. DIAMOND AND RELATED MATERIALS, 2019, 93 : 96 - 104