An Alternative Approach to Investigate V-Shaped Electrothermal Microactuators in Vacuum

被引:10
|
作者
Gama, Gabriel R. de S. [1 ]
Coelho, Claudia A. A. [2 ]
Gaspar, Joao [3 ]
Freitas, Paulo J. P. [4 ]
Sommer, Rubem L. [1 ]
Mello, Alexandre [1 ]
机构
[1] Brazilian Ctr Phys Res, CBPF, LABNANO, BR-22290180 Rio De Janeiro, Brazil
[2] Int Iberian Nanotechnol Lab INL, P-4715330 Braga, Portugal
[3] Int Iberian Nanotechnol Lab INL, Dept Micro & Nanofabricat, P-4715330 Braga, Portugal
[4] Int Iberian Nanotechnol Lab INL, Installat Commiss, P-4715330 Braga, Portugal
关键词
Conductivity; Finite element analysis; Thermal conductivity; Actuators; Resistance heating; Temperature distribution; Displacement measurement; finite element analysis; microactuators; microelectromechanical devices; thermal actuators; ANALYTICAL-MODEL; DESIGN; ACTUATORS; BEAM; SILICON;
D O I
10.1109/JMEMS.2019.2959717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we use a simplified version of Young's solution for the steady-state Joule-heating, that uses temperature dependent thermal and electrical conductivities, to find the temperature and displacement behavior of a V-shaped electrothermal microactuator (ETMA) device. In order to test and validate our approach we performed FEM simulations and actually built an ETMA device by microfabrication. The experimental device displacement was measured in vacuum, with a scanning electron microscope. Our numerical results agree quite well with the FEM simulation and experimental results up to a displacement of (0.8 +/- 0.2) mu m and applied current of 30 mA. Above 35 mA, an abrupt variation of the resistivity is observed followed by surface degradation at 50 mA and device melting at 52 mA. The validity of our approach is discussed of the device geometry and material parameters. [2019-0208]
引用
收藏
页码:387 / 396
页数:10
相关论文
共 50 条
  • [31] Design, Simulation and Testing of Polymeric Microgrippers with V-shaped Electrothermal Actuators and Encapsulated Heaters
    Voicu, R-C.
    Tibeica, C.
    Mueller, R.
    Dinescu, A.
    Pustan, M.
    Birleanu, C.
    2016 39TH INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 2016, : 89 - 92
  • [32] V-shaped flight
    Romagne, Thieny
    EUROPE-REVUE LITTERAIRE MENSUELLE, 2022, (1122) : 318 - 319
  • [33] Larger displacement of silicon electrothermal V-shaped actuator using surface sputtering process
    Dzung Tien Nguyen
    Kien Trung Hoang
    Phuc Hong Pham
    Microsystem Technologies, 2021, 27 : 1985 - 1991
  • [34] Force measurements on U-shaped electrothermal microactuators: applications to packaging
    Boutchich, M.
    Marntora, T. I.
    McShane, G. J.
    Haneef, I.
    Moore, D. F.
    Williams, J. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2008, 222 (01) : 87 - 96
  • [35] Laser effects on the donor states in V-shaped and inverse V-shaped quantum wells
    Niculescu, E. C.
    Radu, A.
    Stafe, M.
    SUPERLATTICES AND MICROSTRUCTURES, 2009, 46 (03) : 443 - 450
  • [36] Improving Critical Frequency of the Electrothermal V-Shaped Actuator Using the Particle Swarm Optimization Algorithm
    Pham, Phuc Hong
    Duc, Phuc Truong
    Hoang, Kien Trung
    Bui, Ngoc-Tam
    SHOCK AND VIBRATION, 2023, 2023
  • [37] The dynamic characteristics research of MEMS V-shaped SiO2/Al electrothermal actuator
    Shen, Yueyue
    Song, Rongchang
    Tang, Haimi
    Chen, Qingsen
    Guan, Ping
    Key Engineering Materials, 2015, 645 : 963 - 967
  • [38] Improving displacement of silicon V-shaped electrothermal microactuator using platinum sputter deposition process
    Nguyen, Dzung Tien
    Pham, Phuc Hong
    Hoang, Kien Trung
    MICROELECTRONICS INTERNATIONAL, 2023, 40 (04) : 239 - 245
  • [39] Noncoplanar V-shaped antenna
    Du, ZW
    Ruan, CL
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1997, 18 (04): : 865 - 874
  • [40] V-Shaped Multislit Weirs
    Ramamurthy, A. S.
    Kai, J.
    Han, S. S.
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2013, 139 (07) : 582 - 585