(Ni)MOF interpenetrated with MnO2 nanothorns anchored on porous carbon cloth as self-standing cathode for high-performance supercapacitors

被引:2
|
作者
Zou, Jian [1 ]
Wang, Yangyang [1 ]
Wang, Zongyu
Fu, Aiping [2 ]
Guo, Yu-Guo [3 ]
Li, Hongliang [1 ,2 ]
机构
[1] Qingdao Univ, Inst Mat Energy & Environm, Coll Mat Sci & Engn, State Key Lab Bio Fibers & Eco Text, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China
来源
基金
国家重点研发计划;
关键词
MOF; MnO2; self-standing electrode; supercapacitor; porous materials; NANOSTRUCTURED MNO2; ELECTRODE MATERIALS; FACILE SYNTHESIS; COMPOSITE; GRAPHENE; MOF; NANOWIRES; NANOROD; ARRAYS;
D O I
10.20964/2022.08.33
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A composite of (Ni)MOF sheets penetrated by MnO2 nano-nanothorns anchored on porous carbon cloth has been fabricated by a two-step hydrothermal method and been explored as self-standing electrode for high-performance supercapacitors. The composite deliveres a high specific capacitance of 1780 mF cm(-2) at 4 mA cm-2 (376 F g(-1) at 1 A g(-1) specific capacitance) and exhibits a capacitance retention of 93.4% at 15 mA cm(-2) after 5000 cycles. It reaches 71.6% of the original capacitance when the current density switches in between 4 and 15 mA cm(-2), indicating an excellent rate capability. These results open up new avenues for the development of high-performance electrode materials and the application of advanced energy storage devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MnO2 nanoflakes anchored on carbon nanotubes as self-standing anode for sodium ion batteries (vol 92, 112291, 2024)
    Lin, Renpeng
    Xiao, Mingjun
    Xu, Yishan
    Zeng, Lei
    Zhu, Fuliang
    Zhang, Yue
    Meng, Yanshuang
    JOURNAL OF ENERGY STORAGE, 2024, 94
  • [32] Self-standing rationally functionalized graphene as high-performance electrode materials for supercapacitors
    Delong Ma
    Zhong Wu
    Zhanyi Cao
    Journal of Energy Chemistry, 2014, (03) : 346 - 353
  • [33] MnO2/porous carbon film/Ni electrodes with high-quality interface for high rate and performance flexible supercapacitors
    Hu, Minglei
    Liu, Yuhao
    Zhang, Min
    Wei, Helin
    Gao, Yihua
    ELECTROCHIMICA ACTA, 2016, 218 : 58 - 65
  • [34] Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors
    Tao, Tao
    Zhang, Ling
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [35] MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors
    Gueon, Donghee
    Moon, Jun Hyuk
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (03): : 2445 - 2453
  • [36] Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
    Hu, Jiyu
    Qian, Feng
    Song, Guosheng
    Li, Wenyao
    Wang, Linlin
    NANOSCALE RESEARCH LETTERS, 2016, 11
  • [37] Sparse MnO2 nanowires clusters for high-performance supercapacitors
    Yuan, Y. F.
    Pei, Y. B.
    Guo, S. Y.
    Fang, J.
    Yang, J. L.
    MATERIALS LETTERS, 2012, 73 : 194 - 197
  • [38] Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
    Jiyu Hu
    Feng Qian
    Guosheng Song
    Wenyao Li
    Linlin Wang
    Nanoscale Research Letters, 2016, 11
  • [39] Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors
    Ye, Zhiguo
    Li, Tao
    Ma, Guang
    Peng, Xinyuan
    Zhao, Jun
    JOURNAL OF POWER SOURCES, 2017, 351 : 51 - 57
  • [40] Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods
    Phattharasupakun, Nutthaphon
    Wutthiprom, Juthaporn
    Chiochan, Poramane
    Suktha, Phansiri
    Suksomboon, Montakan
    Kalasina, Saran
    Sawangphruk, Montree
    CHEMICAL COMMUNICATIONS, 2016, 52 (12) : 2585 - 2588