A lower bound for the first eigenvalue in the Laplacian operator on compact Riemannian manifolds

被引:3
|
作者
He, Yue [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Compact Riemannian manifold; Nonnegative Ricci curvature; Laplacian operator; First nonzero eigenvalue; Manifold diameter; POSITIVE RICCI CURVATURE; DIRICHLET EIGENVALUE; CONJECTURE; GAP;
D O I
10.1016/j.geomphys.2013.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a simple proof of the main result of Ling [J. Ling, Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature, Ann. Global Anal. Geom. 31 (2007) 385-408] in an in-depth study of the sharp lower bound for the first eigenvalue in the Laplacian operator on compact Riemannian manifolds with nonnegative Ricci curvature. Although we use Ling's methods on the whole, to some extent we deal with the singularity of test functions and greatly simplify many of the calculations involved. This may provide a new way for estimating eigenvalues. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条