Non-parametric detection and estimation of structural change

被引:32
|
作者
Kristensen, Dennis [1 ,2 ,3 ]
机构
[1] UCL, Dept Econ, London WC1E 6BT, England
[2] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London WC1E 7AE, England
[3] Aarhus Univ, Ctr Res Econometr Anal Time Series, DK-8000 Aarhus C, Denmark
来源
ECONOMETRICS JOURNAL | 2012年 / 15卷 / 03期
基金
英国经济与社会研究理事会; 美国国家科学基金会; 新加坡国家研究基金会;
关键词
Estimation; Generalized likelihood ratio; Locally stationary; Non-parametric; Structural change; Testing; Time series regression; Time varying; TIME-SERIES MODELS; PARTIALLY LINEAR-MODELS; EFFICIENT ESTIMATION; SEMIPARAMETRIC REGRESSION; PARAMETER INSTABILITY; TERM STRUCTURE; TESTS; NONSTATIONARY; CONSTANCY; BOOTSTRAP;
D O I
10.1111/j.1368-423X.2012.00378.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a semi-non-parametric approach to the estimation and testing of structural change in time series regression models. Under the null of a given set of the coefficients being constant, we develop estimators of both the time-varying (non-parametric) and constant (parametric) components. Given the estimators under null and alternative, generalized F and Wald tests are developed. The asymptotic distributions of the estimators and test statistics are derived. A simulation study examines the finite-sample performance of the estimators and tests. The techniques are employed in the analysis of structural change in the US productivity and the Eurodollar term structure.
引用
收藏
页码:420 / 461
页数:42
相关论文
共 50 条
  • [1] Detection threshold for non-parametric estimation
    Abdourrahmane M. Atto
    Dominique Pastor
    Gregoire Mercier
    [J]. Signal, Image and Video Processing, 2008, 2 : 207 - 223
  • [2] Detection threshold for non-parametric estimation
    Atto, Abdourrahmane M.
    Pastor, Dominique
    Mercier, Gregoire
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2008, 2 (03) : 207 - 223
  • [3] A non-parametric approach to automatic change detection
    Bruzzone, L
    Cossu, R
    Prieto, DF
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VI, 2001, 4170 : 133 - 140
  • [4] Non-Parametric Quickest Mean-Change Detection
    Liang, Yuchen
    Veeravalli, Venugopal V.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (12) : 8040 - 8052
  • [5] Non-parametric Change Point Detection for Spike Trains
    Mosqueiro, Thiago
    Strube-Bloss, Martin
    Tuma, Rafael
    Pinto, Reynaldo
    Smith, Brian H.
    Huerta, Ramon
    [J]. 2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [6] Unsupervised non-parametric change point detection in electrocardiography
    Shvetsov, Nikolay
    Buzun, Nazar
    Dylov, Dmitry V.
    [J]. PROCEEDINGS OF THE 32TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2020, 2020,
  • [7] Change-point detection with non-parametric regression
    Horváth, L
    Kokoszka, P
    [J]. STATISTICS, 2002, 36 (01) : 9 - 31
  • [8] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [9] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [10] Anomaly and target detection by means of non-parametric density estimation
    Tidhar, G. A.
    Rotman, S. R.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390