Arithmetic functions of Fibonacci numbers

被引:0
|
作者
Luca, F [1 ]
机构
[1] Syracuse Univ, Syracuse, NY 13244 USA
来源
FIBONACCI QUARTERLY | 1999年 / 37卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integers n greater than or equal to 1 and k greater than or equal to 0, let phi(k)(n) and sigma(k)(n) be the Euler totient function of n and the sum of the k(th) powers of the divisors of n, respectively. In this note, we present the following inequalities.
引用
收藏
页码:265 / 268
页数:4
相关论文
共 50 条
  • [21] An inequality with Fibonacci numbers and trigonometric functions Proposal
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    [J]. FIBONACCI QUARTERLY, 2018, 56 (04): : 376 - 376
  • [22] Generating functions, Fibonacci numbers and rational knots
    Stoimenow, A.
    [J]. JOURNAL OF ALGEBRA, 2007, 310 (02) : 491 - 525
  • [23] On the law of large numbers and arithmetic functions
    Berkes, Istvan
    Mueller, Wolfgang
    Weber, Michel
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 547 - 555
  • [24] A law of large numbers for arithmetic functions
    Fukuyama, Katusi
    Komatsu, Yutaka
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 349 - 352
  • [25] Equations with arithmetic functions of Pell numbers
    Luca, Florian
    Stanica, Pantelimon
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (04): : 409 - 413
  • [26] 104.03 On periods of Fibonacci numbers using modular arithmetic on the Binet formula
    Sadek, Jawad
    Euler, Russell
    [J]. MATHEMATICAL GAZETTE, 2020, 104 (559): : 150 - 154
  • [27] ON RECIPROCAL SERIES RELATED TO FIBONACCI NUMBERS WITH SUBSCRIPTS IN ARITHMETIC-PROGRESSION
    BACKSTROM, RP
    [J]. FIBONACCI QUARTERLY, 1981, 19 (01): : 14 - 21
  • [28] On k-Step Fibonacci Functions and k-Step Fibonacci Numbers
    Sriponpaew, Boonyong
    Sassanapitax, Lee
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1123 - 1128
  • [29] A NOTE ON (a, b)-FIBONACCI SEQUENCES AND SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS
    Schwab, Emil-Daniel
    Schwab, Gabriela
    [J]. MATHEMATICA BOHEMICA, 2024, 149 (02):
  • [30] Summation of the Product of Certain Functions and Generalized Fibonacci Numbers
    Chong, Chin-Yoon
    Ang, Siew-Ling
    Ho, C. K.
    [J]. INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 80 - 85