Using a geometric Brownian motion to control a Brownian motion and vice versa

被引:4
|
作者
Lefebvre, M
机构
[1] Departement de M., Ecole Polytech. de Montreal, Montréal, Que. H3C 3A7, C.P. 6079, Succursale Centre-ville
基金
加拿大自然科学与工程研究理事会;
关键词
stochastic optimal control; homing problem; Riccati equation; hitting time;
D O I
10.1016/S0304-4149(97)00040-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let x(t) be a one-dimensional Brownian motion. The homing problem for a controlled x(t) process is solved by using a mathematical expectation for an uncontrolled geometric Brownian motion. Furthermore, it turns out that the optimally controlled process is a Bessel process. Similarly, a geometric Brownian motion is optimally controlled by using a mathematical expectation for an uncontrolled Brownian motion process. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 50 条
  • [1] The integral of geometric Brownian motion
    Dufresne, D
    [J]. ADVANCES IN APPLIED PROBABILITY, 2001, 33 (01) : 223 - 241
  • [2] On the integral of geometric Brownian motion
    Schröder, M
    [J]. ADVANCES IN APPLIED PROBABILITY, 2003, 35 (01) : 159 - 183
  • [3] Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
    Bratian, Vasile
    Acu, Ana-Maria
    Oprean-Stan, Camelia
    Dinga, Emil
    Ionescu, Gabriela-Mariana
    [J]. MATHEMATICS, 2021, 9 (22)
  • [4] FORECASTING THE PERFORMANCE OF TADAWUL ALL SHARE INDEX (TASI) USING GEOMETRIC BROWNIAN MOTION AND GEOMETRIC FRACTIONAL BROWNIAN MOTION
    Alhagyan, Mohammed
    Alduais, Fuad
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 62 (01) : 55 - 65
  • [5] An impulse control of a geometric Brownian motion with quadratic costs
    Ohnishi, M
    Tsujimura, M
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 168 (02) : 311 - 321
  • [6] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [7] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [8] Stock price prediction using geometric Brownian motion
    Agustini, Farida W.
    Affianti, Ika Restu
    Putri, Endah R. M.
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2018, 974
  • [9] Nonergodicity of reset geometric Brownian motion
    Vinod, Deepak
    Cherstvy, Andrey G.
    Wang, Wei
    Metzler, Ralf
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2022, 105 (01)
  • [10] On the moments of the integrated geometric Brownian motion
    Levy, Edmond
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 : 263 - 273