Stability of liquid film falling down a vertical non-uniformly heated wall

被引:37
|
作者
Samanta, Arghya [1 ]
机构
[1] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, West Bengal, India
关键词
Nonlinear stability; Complex Ginzburg-Landau equation; Bifurcation analysis; Sideband stability; Modal interaction;
D O I
10.1016/j.physd.2008.03.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object in this paper is to study the stability of a viscous film flowing down a vertical non-uniformly heated wall under gravity. The wall temperature is assumed Linearly distributed along the wall and the free surface is taken to be adiabatic. A long wave perturbation method is used to derive the nonlinear evolution equation for the failing film. Using the method of multiple scale, the nonlinear stability analysis is studied for travelling wave solution of the evolution equation. The complex Ginzburg-Landau equation is determined to discuss the bifurcation analysis of the evolution equation. The results indicate that the supercritical unstable region increases and the subcritical stable region decreases with the increase of Peclet number. It has been also shown that the spatial uniform solution corresponding to the sideband disturbance may be stable in the unstable region. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2587 / 2598
页数:12
相关论文
共 50 条