RESEARCH OF ACTIVATION ENERGY OF THERMAL BREAKDOWN OF POLYMER COMPOSITES MODIFIED BY 4-AMINOBENZOIC ACID

被引:0
|
作者
Buketov, A. V. [1 ]
Kulinich, A. G. [1 ]
Akimov, A. V. [1 ]
Smetankin, S. A. [1 ]
Gusev, V. N. [1 ]
Levkivskyi, R. N. [1 ]
机构
[1] Kherson State Maritime Acad, 20 Ushakov Ave, UA-73009 Kherson, Ukraine
来源
关键词
activation energy; thermogravimetric analysis; Broido method; modifier; epoxy composite; properties; FILLERS;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Calculation of the effective activation energy of thermo-oxidative breakdown (E) of modified epoxy composite materials is carried out on the basis of thermogravimetric analysis using the Broido double logarithmic method. The maximum values of activation energy (E = 152.1 kJ/mol and 152.3 kJ/mol) were found experimentally for composite materials modified by 0.25 wt.% and 0.50 wt.% of 4-aminobenzoic acid, respectively. The values obtained indicate a significant effect of modifier on the activation energy of epoxy composite materials. The results found experimentally show the formation of relatively thermally stable intra- and intermolecular bonds, which indicates the improvement of cross-linking of epoxy composite macromolecules. Improving the cross-linking of epoxy composite macromolecules leads to an increase of thermal stability, which as a result, has an effect on increasing the materials durability.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [31] Crystal structure of 4-aminobenzoic acid-4-methylpyridine (1/1)
    Kumar, M. Krishna
    Pandi, P.
    Sudhahar, S.
    Chakkaravarthi, G.
    Kumar, R. Mohan
    ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2015, 71 : O125 - U564
  • [32] Hydrogen bonding in the bromide salts of 4-aminobenzoic acid and 4-aminoacetophenone
    Cincic, Dominik
    Kaitner, Branko
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2008, 64 : O226 - O229
  • [33] ON MECHANISM OF INCREASING TUBERCULOSTATIC ACTIVITY OF ISONIAZID IN PRESENCE OF 4-AMINOBENZOIC ACID
    URBANCIK, R
    KRAUS, P
    SIMANE, Z
    EXPERIENTIA, 1961, 17 (02): : 83 - &
  • [34] Flow injection spectrophotometric determination of propoxur with diazotized 4-aminobenzoic acid
    Zanella, R
    Primel, EG
    Kurz, MHS
    Gonçalves, FF
    ANALYTICAL LETTERS, 2002, 35 (06) : 1095 - 1105
  • [35] Corrosion resistance of stainless steel covered by 4-aminobenzoic acid films
    Adamczyk, Lidia
    Pietrusiak, Anna
    Bala, Henryk
    CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2012, 10 (05): : 1657 - 1668
  • [36] Investigation of the electrochemical behavior of some catecholamines in the presence of 4-aminobenzoic acid
    Afkhami, A
    Nematollahi, D
    Madrakian, T
    Khalafi, L
    ELECTROCHIMICA ACTA, 2005, 50 (28) : 5633 - 5640
  • [37] BIOSYNTHESIS OF 4-AMINOBENZOIC ACID IN AEROBACTER-AEROGENES .3.
    ALTENDOR.KH
    GILCH, B
    LINGENS, F
    FEBS LETTERS, 1971, 16 (02) : 95 - &
  • [38] Synthesis, growth, structural, optical and thermal properties of an organic single crystal: 4-Nitroaniline 4-aminobenzoic acid
    Silambarasan, A.
    Rajesh, P.
    Ramasamy, P.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 118 : 24 - 27
  • [39] Synthesis and characterization of zeolite encapsulated ruthenium complexes of anthranilic acid and 4-aminobenzoic acid
    Varghese, Annu Anna
    Mohammed, Yusuff K. K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 25 : 186 - 191
  • [40] Structure and properties of 4-aminobenzoic acid-modified polyvinyl chloride and functionalized graphite-based membranes
    Ahmad, Nafees
    Kausar, Ayesha
    Muhammad, Bakhtiar
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2016, 24 (02) : 75 - 87