Phoretic Self-Propulsion

被引:279
|
作者
Moran, Jeffrey L. [1 ]
Posner, Jonathan D. [2 ,3 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
关键词
colloid; physicochemical hydrodynamics; diffusiophoresis; electrokinetic; electrochemistry; low Reynolds number; CATALYTIC NANOMOTORS; COLLOIDAL PARTICLES; LEUKOCYTE LOCOMOTION; CHEMICAL GRADIENTS; ACTIVE COLLOIDS; JANUS SWIMMERS; MOTORS; MOTION; CHEMOTAXIS; DIFFUSIOPHORESIS;
D O I
10.1146/annurev-fluid-122414-034456
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is well-known that micro- and nanoparticles can move by phoretic effects in response to externally imposed gradients of scalar quantities such as chemical concentration or electric potential. A class of active colloids can propel themselves through aqueous media by generating local gradients of concentration and electrical potential via surface reactions. Phoretic active colloids can be controlled using external stimuli and can mimic collective behaviors exhibited by many biological swimmers. Low-Reynolds number physicochemical hydrodynamics imposes unique challenges and constraints that must be understood for the practical potential of active colloids to be realized. Here, we review the rich physics underlying the operation of phoretic active colloids, describe their interactions and collective behaviors, and discuss promising directions for future research.
引用
收藏
页码:511 / 540
页数:30
相关论文
共 50 条
  • [31] Self-Propulsion Simulation of a Tanker Hull
    Pacuraru, Florin
    Lungu, Adrian
    Marcu, Oana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [32] Droplet Self-Propulsion on Superhydrophobic Microtracks
    Stamatopoulos, Christos
    Milionis, Athanasios
    Ackerl, Norbert
    Donati, Matteo
    de la Vallee, Paul Leudet
    von Rohr, Philipp Rudolf
    Poulikakos, Dimos
    ACS NANO, 2020, 14 (10) : 12895 - 12904
  • [33] Self-propulsion of an active polar drop
    Yoshinaga, Natsuhiko
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (18):
  • [34] Self-propulsion estimations for a bulk carrier
    Gokce, Metin Kemal
    Kinaci, Omer Kemal
    Alkan, Ahmet Dursun
    SHIPS AND OFFSHORE STRUCTURES, 2019, 14 (07) : 656 - 663
  • [35] MHD self-propulsion of deformable shapes
    Miloh, T.
    ADVANCES IN ENGINEERING MECHANICS - REFLECTIONS AND OUTLOOKS: IN HONOR OF THEODORE Y-T WU, 2005, : 603 - 612
  • [36] SELF-PROPULSION OF ASYMMETRICALLY VIBRATING BUBBLES
    BENJAMIN, TB
    ELLIS, AT
    JOURNAL OF FLUID MECHANICS, 1990, 212 : 65 - 80
  • [37] Infinite Self-Propulsion of Circularly On/Discharged Droplets
    Han, Xiao
    Jin, Rongyu
    Sun, Yue
    Han, Keyu
    Che, Pengda
    Wang, Xuan
    Guo, Pu
    Tan, Shengda
    Sun, Xu
    Dai, Haoyu
    Dong, Zhichao
    Heng, Liping
    Jiang, Lei
    ADVANCED MATERIALS, 2024, 36 (18)
  • [38] Electrokinetic self-propulsion by inhomogeneous surface kinetics
    Yariv, Ehud
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2130): : 1645 - 1664
  • [39] THE SELF-PROPULSION OF MICROSCOPIC ORGANISMS THROUGH LIQUIDS
    HANCOCK, GJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1953, 217 (1128): : 96 - 121
  • [40] A minimal robophysical model of quadriflagellate self-propulsion
    Diaz, Kelimar
    Robinson, Tommie L.
    Aydin, Yasemin Ozkan
    Aydin, Enes
    Goldman, Daniel, I
    Wan, Kirsty Y.
    BIOINSPIRATION & BIOMIMETICS, 2021, 16 (06)