Modelling of the gas combustion process

被引:0
|
作者
Baczynska, Teresa [1 ]
Glowinski, Jozef [1 ]
Halat, Adam [1 ]
机构
[1] Wroclaw Univ Technol, Inst Inorgan Technol & Mineral Fertilizers, PL-50370 Wroclaw, Poland
关键词
flammable gas; burning velocity; rate of pressure rise; deflagration index K(G);
D O I
10.2478/v10026-008-0004-8
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This paper reports on a procedure which leads to the assessment of the K(G) values without the need of determining the maximal rate of pressure rise by experiments. A simulation is proposed of the combustion process in its simplest form, i.e. one-dimensional propagation of the flame. Such simulation enables the burning velocity S(u) to be assessed. Knowing the S(u) values for different compositions of the flammable mixture makes it possible to determine the S(u,max) value. Once the correlation between S(u,max) and K(G) has been established, this will enable us to assign an appropriate value of K(G) to that of the maximal burning velocity. An example of such a correlation is given. It refers to flammable mixtures of a comparatively low burning velocity.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [21] THE INFLUENCE OF OXYGEN ADDITION INTO AIR COMBUSTION ON NATURAL GAS COMBUSTION PROCESS
    Wilk, Malgorzata
    Magdziarz, Aneta
    Kuznia, Monika
    RYNEK ENERGII, 2010, (05): : 32 - 36
  • [22] Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber
    Motyl, Przemyslaw
    Krol, Danuta
    Poskrobko, Slawomir
    Juszczak, Marek
    ENERGIES, 2020, 13 (21)
  • [23] MODELLING OF THE COMBUSTION PROCESS IN THE ROTARY KILN AND FLASH FURNACE OF THE CEMENT PROCESS.
    Hassan, G.A.
    Abdel-Ghani, A.A.
    Modelling, simulation & control. B, 1988, 13 (02): : 21 - 32
  • [24] Modelling adiabatic flame temperature for methane with an overview for advanced combustion process: flameless combustion
    Imakhlaf, Anis
    Beghidja, Abdelhadi
    CHEMICAL PRODUCT AND PROCESS MODELING, 2022, 17 (05): : 459 - 477
  • [25] The Effect of Oxygen Drop on Combustion Process Gas-Gas Injector
    Du, Zheng-Gang
    Gao, Yu-Shan
    Cai, Guo-Biao
    Yuhang Xuebao/Journal of Astronautics, 2009, 30 (02): : 675 - 679
  • [26] Modelling of turbulent gas/particle combustion by a Lagrangian PDF method
    Rose, M.
    Roth, P.
    Frolov, S.M.
    Neuhaus, M.G.
    Combustion science and technology, 1999, 149 (01): : 95 - 113
  • [27] EXPERIMENTAL STUDY AND COMPUTATIONAL MODELLING OF GAS FIRED PULSE COMBUSTION
    Smajevic, I.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2010, 1 : 1 - 12
  • [28] Modelling of turbulent gas/particle combustion by a Lagrangian PDF method
    Rose, M
    Roth, P
    Frolov, SM
    Neuhaus, MG
    COMBUSTION SCIENCE AND TECHNOLOGY, 1999, 149 (1-6) : 95 - 113
  • [29] Rice husk combustion evolved gas analysis experiments and modelling
    Alias, A. B.
    Shallcross, D. C.
    Sharifah, A. S. A. K.
    BIOMASS & BIOENERGY, 2015, 78 : 36 - 47
  • [30] COMPUTATIONALLY INTELLIGENT MODELLING AND CONTROL OF FLUIDIZED BED COMBUSTION PROCESS
    Cojbasic, Zarko M.
    Nikolic, Vlastimir D.
    Ciric, Ivan T.
    Cojbasic, Ljubica R.
    THERMAL SCIENCE, 2011, 15 (02): : 321 - 338