On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space

被引:1
|
作者
Jin, Minghao [1 ,2 ]
Pei, Donghe [1 ]
Xu, Shu [3 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Peoples R China
[3] Chongqing Police Coll, Rear Serv Off, Chongqing 401331, Peoples R China
关键词
RULED SURFACES;
D O I
10.1155/2013/130495
中图分类号
学科分类号
摘要
By studying the Gauss map G and Laplace operator Delta(h) of the second fundamental form h, we will classify surfaces of revolution with a lightlike axis in 3-dimensional Minkowski space and also obtain the surface of Enneper of the 2nd kind, the surface of Enneper of the 3rd kind, the de Sitter pseudosphere, and the hyperbolic pseudosphere that satisfy condition Delta(h)G = Lambda G, Lambda being a 3 x 3 real matrix.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Spacelike Framed Curves with Lightlike Components and Singularities of Their Evolutes and Focal Surfaces in Minkowski 3-space
    Peng Cheng LI
    Dong He PEI
    Xin ZHAO
    [J]. Acta Mathematica Sinica,English Series, 2024, (06) : 1521 - 1532
  • [32] ON PARALLEL SURFACES IN MINKOWSKI 3-SPACE
    Unluturk, Yasin
    Ozusaglam, Erdal
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2013, 3 (02): : 214 - 222
  • [33] Umbilics of surfaces in the Minkowski 3-space
    Tari, Farid
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (03) : 723 - 731
  • [34] Pedal Curves of Non-Lightlike Curves in Minkowski 3-Space
    Li, Meixuan
    Yao, Kaixin
    Li, Pengcheng
    Pei, Donghe
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [35] Backlund transformation for non-lightlike curves in Minkowski 3-space
    Ozdemir, M.
    Coken, A. Ceylan
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2540 - 2545
  • [36] The geometry of lightlike surfaces in Minkowski space
    Carlsen, Brian
    Clelland, Jeanne N.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 43 - 55
  • [37] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Erdogdu, Melek
    Ozdemir, Mustafa
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 169 - 181
  • [38] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    [J]. Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [39] Surfaces in Minkowski 3-space and harmonic maps
    Inoguchi, JI
    [J]. HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 249 - 270
  • [40] Ruled Weingarten surfaces in Minkowski 3-space
    Franki Dillen
    Wolfgang Kühnel
    [J]. manuscripta mathematica, 1999, 98 : 307 - 320