Eigenvalue problem for a p-Laplacian equation with trapping potentials

被引:14
|
作者
Gu, Long-Jiang [1 ]
Zeng, Xiaoyu [2 ]
Zhou, Huan-Song [2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, POB 71010, Wuhan 430071, Peoples R China
[2] Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
关键词
P-Laplacian; Elliptic equation; Eigenvalue problem; Least energy; Blowup rate; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNBOUNDED-DOMAINS; GROUND-STATES; UNIQUENESS; EXISTENCE; SYMMETRY; RN; PRINCIPLE; R(N);
D O I
10.1016/j.na.2016.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following eigenvalue problem of p-Laplacian equation - Delta(P)u + V(x)vertical bar u vertical bar(p-2)u = mu vertical bar u vertical bar(p-2)u + a vertical bar u vertical bar(s-2)u, x epsilon R-n, (P) where a >= 0, p is an element of (1,n) and is an element of R. V(x) is a trapping type potential, e.g., inf(x)is an element of R-n. V(x) < lim(vertical bar x vertical bar ->+infinity) V(x). By using constrained variational methods, we proved that there is a* > 0, which can be given explicitly, such that problem (P) has a ground state u with vertical bar u vertical bar L-p = 1 for some mu is an element of R and all a is an element of [0, a*), but (P) has no this kind of ground state if a >= a*. Furthermore, by establishing some delicate energy estimates we show that the global maximum point of the ground state of problem (P) approaches one of the global minima of V(x) and blows up if a NE arrow a*. The optimal rate of blowup is obtained for V(x) being a polynomial type potential. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条
  • [41] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [42] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [43] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [44] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [45] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [46] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [47] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036
  • [48] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590
  • [49] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756
  • [50] EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS
    Cheng, Yan-Hsiou
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,