Zirconium Carbide Mediates Coke-Resistant Methane Dry Reforming on Nickel-Zirconium Catalysts

被引:20
|
作者
Haug, Leander [1 ]
Thurner, Christoph [1 ]
Bekheet, Maged F. [2 ]
Bischoff, Benjamin [2 ]
Gurlo, Aleksander [2 ]
Kunz, Martin [3 ]
Sartory, Bernhard [4 ]
Penner, Simon [1 ]
Kloetzer, Bernhard [1 ]
机构
[1] Univ Innsbruck, Inst Phys Chem, Innrain 52 C, A-6020 Innsbruck, Austria
[2] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Fachgebiet Keram Werkstoffe, Str 17 Juni 135, D-10623 Berlin, Germany
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Mat Ctr Leoben Forsch GmbH, Roseggerstr 12, A-8700 Leoben, Austria
关键词
Carbon Spillover; Methane Dry Reforming; Near Ambient Pressure XPS; NiZr Intermetallic Catalyst; Zirconium Carbide; SYNTHESIS GAS; CARBON; STEAM; MECHANISM; DYNAMICS; COKING; GROWTH;
D O I
10.1002/anie.202213249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic deposits anti-segregate into Ni-0 nanoparticles to provide restored CH4 adsorption sites and near-surface/dissolved C atoms, which migrate to the Ni-0/ZrO2 interface and induce local ZrxCy formation. The resulting oxygen-deficient carbidic phase boundary sites assist in the kinetically enhanced CO2 activation toward CO(g). This interface carbide mechanism allows for enhanced spillover of carbon to the ZrO2 support, and represents an alternative catalyst regeneration pathway with respect to the reverse oxygen spillover on Ni-CeZrxOy catalysts. It is therefore rather likely on supports with limited oxygen storage/exchange kinetics but significant carbothermal reducibility.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: effects of indium on the Ni/Al2O3 catalyst
    Wang, Chuanshen
    Su, Tongming
    Qin, Zuzeng
    Ji, Hongbing
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (15) : 4826 - 4836
  • [22] Doping low amount of Zirconium in Rh-LTO to prepare durable catalysts for dry reforming of methane
    Xu, Dong-Jie
    Wu, Juan
    Liu, Zheng
    Qiao, Lu-Yang
    Zong, Shan-Shan
    Zhou, Zhang-Feng
    Yao, Yuan-Gen
    [J]. MOLECULAR CATALYSIS, 2023, 535
  • [23] Promotion effects of nickel catalysts of dry reforming with methane
    Yan, ZF
    Ding, RG
    Liu, XM
    Song, LH
    [J]. CHINESE JOURNAL OF CHEMISTRY, 2001, 19 (08) : 738 - 744
  • [24] Methane Dry Reforming over Nickel Perovsikite Catalysts
    de Caprariis, Benedetta
    De Filippis, Paolo
    Petrullo, Antonietta
    Scarsella, Marco
    [J]. ICHEAP12: 12TH INTERNATIONAL CONFERENCE ON CHEMICAL & PROCESS ENGINEERING, 2015, 43 : 991 - 996
  • [25] Methane dry reforming over carbide, nickel-based, and noble metal catalysts.
    Shamsi, A
    Lyons, DK
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U250 - U250
  • [26] A new automated synthesis of a coke-resistant Cs-promoted Ni-supported nanocatalyst for sustainable dry reforming of methane
    Oh, Kyung Hee
    Lee, Jin Hee
    Kim, Kwangsoo
    Lee, Hack-Keun
    Kang, Shin Wook
    Yang, Jung-Il
    Park, Jong-Ho
    Hong, Chang Seop
    Kim, Byung-Hyun
    Park, Ji Chan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (04) : 1666 - 1675
  • [27] Autothermal Reforming of Bio-ethanol: A Short Review of Strategies Used to Synthesize Coke-Resistant Nickel-Based Catalysts
    Balopi, Babusi
    Moyo, Mahluli
    Gorimbo, Joshua
    [J]. CATALYSIS LETTERS, 2022, 152 (10) : 3004 - 3016
  • [28] Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane
    Huang, Nongfeng
    Su, Tongming
    Qin, Zuzeng
    Ji, Hongbing
    [J]. CHEMISTRYSELECT, 2022, 7 (47):
  • [29] Phosphorus-tuned nickel as high coke-resistant catalyst with high reforming activity
    Wang, Xinhe
    Liu, Yanshuo
    Liu, Kun
    Zhang, Junshe
    Wei, Jinjia
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (53) : 28325 - 28336
  • [30] Highly coke resistant Ni-Co/KCC-1 catalysts for dry reforming of methane
    Palanichamy, Kuppusamy
    Umasankar, Samidurai
    Ganesh, Srinivasan
    Sasirekha, Natarajan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (31) : 11727 - 11745