Convexity in oriented graphs

被引:15
|
作者
Chartrand, G
Fink, JF
Zhang, P [1 ]
机构
[1] Univ Michigan, Dept Math & Stat, Dearborn, MI 48128 USA
[2] Western Michigan Univ, Dept Math & Stat, Kalamazoo, MI 49008 USA
关键词
convex set; convexity number; orientable convexity number;
D O I
10.1016/S0166-218X(00)00382-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For vertices u and nu in an oriented graph D, the closed interval I[u, nu] consists of u and nu together with all vertices lying in a u - nu geodesic or nu - u geodesic in D. For S subset of or equal to V(D), I[S] is the union of all closed intervals I[u, nu] with u, nu epsilon S. A set S is convex if I[S] = S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n - 1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1 less than or equal to k less than or equal to n - 1 and k not equal 2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(-)(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con(+)(G) is the maximum such convexity number. It is shown that con(+) (G) = n - 1 for every graph G of order n greater than or equal to 2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 50 条
  • [41] Displacement convexity of entropy and related inequalities on graphs
    Nathael Gozlan
    Cyril Roberto
    Paul-Marie Samson
    Prasad Tetali
    [J]. Probability Theory and Related Fields, 2014, 160 : 47 - 94
  • [42] On the Caratheodory and exchange numbers of geodetic convexity in graphs
    Anand, Bijo S.
    Chandran, Ullas S., V
    Changat, Manoj
    Dourado, Mitre C.
    Nezhad, Ferdoos Hossein
    Narasimha-Shenoi, Prasanth G.
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 804 : 46 - 57
  • [43] A convexity lemma and expansion procedures for bipartite graphs
    Imrich, W
    Klavzar, S
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) : 677 - 685
  • [44] Convexity, geodetic, and hull numbers of the join of graphs
    Canoy, Sergio R., Jr.
    Cagaanan, Gilbert B.
    Gervacio, Severino V.
    [J]. UTILITAS MATHEMATICA, 2006, 71 : 143 - 159
  • [45] CONVEXITY OF STRATA IN DIAGONAL PANTS GRAPHS OF SURFACES
    Aramayona, J.
    Lecuire, C.
    Parlier, H.
    Shackleton, K. J.
    [J]. PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 219 - 237
  • [46] On the oriented chromatic index of oriented graphs
    Ochem, Pascal
    Pinlou, Alexandre
    Sopena, Eric
    [J]. JOURNAL OF GRAPH THEORY, 2008, 57 (04) : 313 - 332
  • [47] Subeulerian Oriented Graphs
    Li, Zhenzhen
    Wu, Baoyindureng
    Yeo, Anders
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1041 - 1052
  • [48] On the dimension of oriented graphs
    Chartrand, G
    Raines, M
    Zhang, P
    [J]. UTILITAS MATHEMATICA, 2001, 60 : 139 - 151
  • [49] Oriented threshold graphs
    Boeckner, Derek
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 43 - 53
  • [50] CONNECTIVITY OF ORIENTED GRAPHS
    JOLIVET, JL
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (02): : 148 - &