A new transform method in nabla discrete fractional calculus

被引:4
|
作者
Jarad, Fahd [1 ]
Kaymakcalan, Billur [1 ]
Tas, Kenan [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
关键词
discrete Sumudu transform; fractional sums; fractional differences; convolution; time scale; DIFFERENTIAL-EQUATIONS; SUMUDU TRANSFORM; RIEMANN;
D O I
10.1186/1687-1847-2012-190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the definition of the Sumudu transform on a general nabla time scale, we define the generalized nabla discrete Sumudu transform. We obtain the nabla discrete Sumudu transform of Taylor monomials, fractional sums, and differences. We apply this transform to solve some fractional difference equations with initial value problems. MSC: 44A15, 44A55.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The mellin integral transform in fractional calculus
    Luchko, Yuri
    Kiryakova, Virginia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 405 - 430
  • [32] The mellin integral transform in fractional calculus
    Yuri Luchko
    Virginia Kiryakova
    Fractional Calculus and Applied Analysis, 2013, 16 : 405 - 430
  • [33] Relationship Between Fractional Calculus and Fractional Fourier Transform
    Zhang, Yanshan
    Zhang, Feng
    Lu, Mingfeng
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2015, 2015, 9596
  • [34] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [35] The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus
    Amalraj, J. Leo
    Manuel, M. Maria Susai
    Meganathan, M.
    Ali, M. Syed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [36] Some new gronwall-bellmann type discrete fractional inequalities arising in the theory of discrete fractional calculus
    Feng, Qinghua (fqhua@sina.com), 1600, International Association of Engineers (46):
  • [37] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [38] Discrete weighted fractional calculus and applications
    Rui A. C. Ferreira
    Nonlinear Dynamics, 2021, 104 : 2531 - 2536
  • [39] Discrete weighted fractional calculus and applications
    Ferreira, Rui A. C.
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2531 - 2536
  • [40] Discrete fractional calculus and the Saalschutz theorem
    Ferreira, Rui A. C.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174