A new transform method in nabla discrete fractional calculus

被引:4
|
作者
Jarad, Fahd [1 ]
Kaymakcalan, Billur [1 ]
Tas, Kenan [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
关键词
discrete Sumudu transform; fractional sums; fractional differences; convolution; time scale; DIFFERENTIAL-EQUATIONS; SUMUDU TRANSFORM; RIEMANN;
D O I
10.1186/1687-1847-2012-190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the definition of the Sumudu transform on a general nabla time scale, we define the generalized nabla discrete Sumudu transform. We obtain the nabla discrete Sumudu transform of Taylor monomials, fractional sums, and differences. We apply this transform to solve some fractional difference equations with initial value problems. MSC: 44A15, 44A55.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A new transform method in nabla discrete fractional calculus
    Fahd Jarad
    Billur Kaymakçalan
    Kenan Taş
    Advances in Difference Equations, 2012
  • [2] Nabla discrete fractional calculus and nabla inequalities
    Anastassiou, George A.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) : 562 - 571
  • [3] DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR
    Atici, Ferhan M.
    Eloe, Paul W.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
  • [4] On the series representation of nabla discrete fractional calculus
    Wei, Yiheng
    Gao, Qing
    Liu, Da-Yan
    Wang, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 198 - 218
  • [5] On Sumudu Transform Method in Discrete Fractional Calculus
    Jarad, Fahd
    Tas, Kenan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] Fundamental Theorems in Discrete Fractional Calculus using Nabla Operator
    Abisha, M.
    Sathinathan, T.
    Saraswathi, D.
    Xavier, Britto Antony G.
    IAENG International Journal of Applied Mathematics, 2024, 54 (10) : 2024 - 2029
  • [7] ON NABLA DISCRETE FRACTIONAL CALCULUS OPERATOR FOR A MODIFIED BESSEL EQUATION
    Yilmazer, Resat
    Ozturk, Okkes
    THERMAL SCIENCE, 2018, 22 : S203 - S209
  • [8] The Laplace transform in discrete fractional calculus
    Holm, Michael T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1591 - 1601
  • [9] Particular Solutions of the Radial Schrodinger Equation via Nabla Discrete Fractional Calculus Operator
    Ozturk, Okkes
    Yilmazer, Resat
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [10] Foundations of nabla fractional calculus on time scales and inequalities
    Anastassiou, George A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) : 3750 - 3762