18F-FET PET radiomics-based survival prediction in glioblastoma patients receiving radio(chemo)therapy

被引:5
|
作者
Wiltgen, Tun [1 ,2 ,3 ]
Fleischmann, Daniel F. [2 ,4 ,5 ]
Kaiser, Lena [6 ]
Holzgreve, Adrien [6 ]
Corradini, Stefanie [2 ,4 ]
Landry, Guillaume [2 ]
Ingrisch, Michael [7 ]
Popp, Ilinca [8 ]
Grosu, Anca L. [8 ]
Unterrainer, Marcus [6 ]
Bartenstein, Peter [6 ]
Parodi, Katia [1 ]
Belka, Claus [2 ,4 ]
Albert, Nathalie [6 ]
Niyazi, Maximilian [2 ,4 ]
Riboldi, Marco [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Med Phys, Garching, Germany
[2] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Radiat Oncol, Munich, Germany
[3] Tech Univ Munich, Sch Med, Dept Neurol, Munich, Germany
[4] German Canc Consortium DKTK, Partner Site, Munich, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[7] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Radiol, Munich, Germany
[8] Univ Freiburg, Fac Med, Med Ctr, Dept Radiat Oncol, Freiburg, Germany
关键词
Quantitative image analysis; Radiomics; Survival analysis; Glioblastoma; Radiotherapy; FEATURES; (FET)-F-18-PET; DISCRETIZATION; RADIOTHERAPY; REDUCTION; IMPACT; MRI;
D O I
10.1186/s13014-022-02164-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Quantitative image analysis based on radiomic feature extraction is an emerging field for survival prediction in oncological patients. F-18-Fluorethyltyrosine positron emission tomography (F-18-FET PET) provides important diagnostic and grading information for brain tumors, but data on its use in survival prediction is scarce. In this study, we aim at investigating survival prediction based on multiple radiomic features in glioblastoma patients undergoing radio(chemo)therapy. Methods: A dataset of 37 patients with glioblastoma (WHO grade 4) receiving radio(chemo)therapy was analyzed. Radiomic features were extracted from pre-treatment F-18-FET PET images, following intensity rebinning with a fixed bin width. Principal component analysis (PCA) was applied for variable selection, aiming at the identification of the most relevant features in survival prediction. Random forest classification and prediction algorithms were optimized on an initial set of 25 patients. Testing of the implemented algorithms was carried out in different scenarios, which included additional 12 patients whose images were acquired with a different scanner to check the reproducibility in prediction results. Results: First order intensity variations and shape features were predominant in the selection of most important radiomic signatures for survival prediction in the available dataset. The major axis length of the F-18-FET-PET volume at tumor to background ratio (TBR) 1.4 and 1.6 correlated significantly with reduced probability of survival. Additional radiomic features were identified as potential survival predictors in the PTV region, showing 76% accuracy in independent testing for both classification and regression. Conclusions: F-18-FET PET prior to radiation provides relevant information for survival prediction in glioblastoma patients. Based on our preliminary analysis, radiomic features in the PTV can be considered a robust dataset for survival prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 18F-FET PET radiomics-based survival prediction in glioblastoma patients receiving radio(chemo)therapy
    Tun Wiltgen
    Daniel F. Fleischmann
    Lena Kaiser
    Adrien Holzgreve
    Stefanie Corradini
    Guillaume Landry
    Michael Ingrisch
    Ilinca Popp
    Anca L. Grosu
    Marcus Unterrainer
    Peter Bartenstein
    Katia Parodi
    Claus Belka
    Nathalie Albert
    Maximilian Niyazi
    Marco Riboldi
    [J]. Radiation Oncology, 17
  • [2] Repeatability of Quantitative 18F-FET PET in Glioblastoma
    Ferjancic, Peter
    Ebert, Martin A.
    Francis, Roslyn
    Nowak, Anna K.
    Jeraj, Robert
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (03)
  • [3] 18F-FET PET and MRI for treatment planning in glioblastoma
    Harat, M.
    Malkowski, B.
    Okonska, Z.
    Makarewicz, R.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S302 - S302
  • [4] A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients
    Ruan, Zhuoying
    Mei, Nan
    Lu, Yiping
    Xiong, Ji
    Li, Xuanxuan
    Zheng, Weiwei
    Liu, Li
    Yin, Bo
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2022, 46 (03) : 470 - 479
  • [5] Synthetic MRI improves radiomics-based glioblastoma survival prediction
    Moya-Saez, Elisa
    Navarro-Gonzalez, Rafael
    Cepeda, Santiago
    Perez-Nunez, Angel
    De Luis-Garcia, Rodrigo
    Aja-Fernandez, Santiago
    Alberola-Lopez, Carlos
    [J]. NMR IN BIOMEDICINE, 2022, 35 (09)
  • [6] 18F-FET PET/CT in Early Subventricular Zone Recurrence of Adult Glioblastoma
    Dissaux, Gurvan
    Dissaux, Brieg
    Bourhis, David
    Schick, Ulrike
    Querellou, Solene
    [J]. CLINICAL NUCLEAR MEDICINE, 2021, 46 (06) : 499 - 500
  • [7] 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma
    Plotkin, Michail
    Gneveckow, Uwe
    Meier-Hauff, Klaus
    Amthauer, Holger
    Feussner, Annelie
    Denecke, Timm
    Gutberlet, Matthias
    Jordan, Andreas
    Felix, Roland
    Wust, Peter
    [J]. INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2006, 22 (04) : 319 - 325
  • [8] 18F-FET PET/CT In The Management Of Patients With Brain Tumor
    Colandrea, M.
    Milanesi, I. M.
    Lamperti, E.
    Schiariti, M.
    Alessi, S.
    Ferrari, M. E.
    Fracassi, S. L.
    Travaini, L. L.
    Silvani, A.
    Fariselli, L.
    Ferroli, P.
    Cascio, A. S.
    Papi, S.
    Fiorenza, M.
    Grana, C. M.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S431 - S431
  • [9] 18F-FET PET MRI / CT in Glioblastoma Relapse - Contribution to Target Volume Definition and Association of Tracer Uptakes with Survival
    Waltenberger, M.
    Kessel, K. A.
    Peeken, J. C.
    Weber, W.
    Pyka, T.
    Zimmer, C.
    Combs, S. E.
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2019, 195 : S115 - S115
  • [10] 18F-FET PET/MRI for Clinical Management of Patients with Brain Tumors
    Saleh, Jenna
    [J]. RADIOLOGY-IMAGING CANCER, 2022, 4 (03): : e229009